[Fronts et invasions dans des domaines quelconques]
Cette Note définit des notions générales d'ondes et fronts pour des équations de réaction–diffusion dans des domaines quelconques et donne des résultats qualitatifs de monotonie et d'unicité pour des fronts d'invasion ou presque plans.
This Note defines generalized waves and fronts for reaction–diffusion equations in general domains. Some qualitative monotonicity and uniqueness results are given for invasion and almost-planar fronts.
Accepté le :
Publié le :
Henri Berestycki 1 ; François Hamel 2
@article{CRMATH_2006__343_11-12_711_0, author = {Henri Berestycki and Fran\c{c}ois Hamel}, title = {Fronts and invasions in general domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {711--716}, publisher = {Elsevier}, volume = {343}, number = {11-12}, year = {2006}, doi = {10.1016/j.crma.2006.09.036}, language = {en}, }
Henri Berestycki; François Hamel. Fronts and invasions in general domains. Comptes Rendus. Mathématique, Volume 343 (2006) no. 11-12, pp. 711-716. doi : 10.1016/j.crma.2006.09.036. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.036/
[1] Front propagation in periodic excitable media, Comm. Pure Appl. Math., Volume 55 (2002), pp. 949-1032
[2] H. Berestycki, F. Hamel, Generalized travelling waves for reaction–diffusion equations, in press
[3] H. Berestycki, F. Hamel, On a general definition of travelling waves and their properties, preprint
[4] H. Berestycki, F. Hamel, Reaction–Diffusion Equations and Propagation Phenomena, Springer, 2007, in press
[5] H. Berestycki, F. Hamel, H. Matano, Travelling waves in the presence of an obstacle, preprint
[6] The speed of propagation for KPP type problems. I – Periodic framework, J. Eur. Math. Soc., Volume 7 (2005), pp. 173-213
[7] Existence of non-planar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., Volume 31 (1999), pp. 80-118
[8] Mathematical Aspects of Reacting and Diffusing Systems, Springer-Verlag, 1979
[9] Existence and qualitative properties of conical bistable fronts, Disc. Cont. Dyn. Systems, Volume 13 (2005), pp. 1069-1096
[10] Travelling waves and entire solutions of the Fisher-KPP equation in , Arch. Ration. Mech. Anal., Volume 157 (2001), pp. 91-163
[11] Corner defects in almost planar interface propagation, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 23 (2006), pp. 283-329
[12] H. Matano, Oral communication
[13] Existence and global stability of traveling curved fronts in the Allen–Cahn equations, J. Differential Equations, Volume 213 (2005), pp. 204-233
[14] Biological Invasions: Theory and Practice, Oxford University Press, Oxford, 1997
[15] Existence of planar flame fronts in convective-diffusive periodic media, Arch. Ration. Mech. Anal., Volume 121 (1992), pp. 205-233
Cité par Sources :
Commentaires - Politique