[Anneaux d'endomorphismes et classes d'isogénies de modules de Drinfeld de rang 2 sur un corps fini]
Pour un module de Drinfeld de rang 2, on étudie plusieurs points d'analogie avec les courbes elliptiques. Plus précisément, on étudie la charactéristique polynômiale d'un module de Drinfeld de rang 2 et en l'utilisant, on calcule le nombre de classes d'isogénies d'un module de Drinfeld de rang 2 sur un corps fini.
For a Drinfeld module of rank 2, we discuss many analogy points with elliptic curves. More precisely, we study the characteristic polynomial of a Drinfeld module of rank 2 and use it to calculate the number of isogeny classes for such modules.
Accepté le :
Publié le :
Mohamed-Saadbouh Mohamed-Ahmed 1
@article{CRMATH_2006__343_11-12_737_0, author = {Mohamed-Saadbouh Mohamed-Ahmed}, title = {Endomorphism rings and isogenies classes for {Drinfeld} {\protect\emph{A}-modules} of rank 2 over finite fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {737--740}, publisher = {Elsevier}, volume = {343}, number = {11-12}, year = {2006}, doi = {10.1016/j.crma.2006.10.026}, language = {en}, }
TY - JOUR AU - Mohamed-Saadbouh Mohamed-Ahmed TI - Endomorphism rings and isogenies classes for Drinfeld A-modules of rank 2 over finite fields JO - Comptes Rendus. Mathématique PY - 2006 SP - 737 EP - 740 VL - 343 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2006.10.026 LA - en ID - CRMATH_2006__343_11-12_737_0 ER -
Mohamed-Saadbouh Mohamed-Ahmed. Endomorphism rings and isogenies classes for Drinfeld A-modules of rank 2 over finite fields. Comptes Rendus. Mathématique, Volume 343 (2006) no. 11-12, pp. 737-740. doi : 10.1016/j.crma.2006.10.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.10.026/
[1] Bruno Angles, Modules de Drinfeld sur les corps finis, Thése de Doctorat, Université Paul Sabatier-Toulous III, no d'ordre 1872, 1994
[2] One some subring of Ore polynomials connected with finite Drinfeld modules, J. Algebra, Volume 181 (1996) no. 2, pp. 507-522
[3] Modules elliptiques, Math. USSR-Sb., Volume 94(136) (1974), pp. 594-627 (656)
[4] E.-U. Gekeler, B.A. Snyder, Drinfeld modules over finite fields, in: Drinfeld Modules, Modular Schemes and Application, Alden-Biesen, 1996
[5] Basic Structures of Function Field Arithmetic, Ergebnise der Mathematik und ihrer Grenzgebiete, vol. 35, Springer, 2006
[6] Isogenies of Drinfeld modules over finite fields, J. Number Theory, Volume 54 (1995) no. 1, pp. 161-171
Cité par Sources :
Commentaires - Politique