Let and n be positive integers such that . Let for . We prove that which confirms Farhi's conjecture (2005). Further we show that if , then .
Soit , r et n des entiers positifs tels que , posons pour . Nous démontrons , ce qui confirme la conjecture de Fahri (2005). De plus, nous montrons que si alors .
Accepted:
Published online:
Shaofang Hong 1; Weiduan Feng 1
@article{CRMATH_2006__343_11-12_695_0, author = {Shaofang Hong and Weiduan Feng}, title = {Lower bounds for the least common multiple of finite arithmetic progressions}, journal = {Comptes Rendus. Math\'ematique}, pages = {695--698}, publisher = {Elsevier}, volume = {343}, number = {11-12}, year = {2006}, doi = {10.1016/j.crma.2006.11.002}, language = {en}, }
TY - JOUR AU - Shaofang Hong AU - Weiduan Feng TI - Lower bounds for the least common multiple of finite arithmetic progressions JO - Comptes Rendus. Mathématique PY - 2006 SP - 695 EP - 698 VL - 343 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2006.11.002 LA - en ID - CRMATH_2006__343_11-12_695_0 ER -
Shaofang Hong; Weiduan Feng. Lower bounds for the least common multiple of finite arithmetic progressions. Comptes Rendus. Mathématique, Volume 343 (2006) no. 11-12, pp. 695-698. doi : 10.1016/j.crma.2006.11.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.11.002/
[1] Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976
[2] Minoration non triviales du plus petit commun multiple de certaines suites finies d'entiers, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005), pp. 469-474
[3] B. Green, T. Tao, The primes contain arbitrarily long arithmetic progression, Ann. Math., in press
[4] On the product of the primes, Canad. Math. Bull., Volume 15 (1972), pp. 33-37
[5] An Introduction to the Theory of Numbers, Oxford University Press, London, 1960
[6] Asymptotic behavior of eigenvalues of greatest common divisor matrices, Glasgow Math. J., Volume 46 (2004), pp. 551-569
[7] On Chebyshev-type inequalities for primes, Amer. Math. Monthly, Volume 89 (1982), pp. 126-129
Cited by Sources:
⁎ Research is partially supported by SRF for ROCS, SEM.
Comments - Policy