We establish an asymptotic expansion for families of Bergman kernels. The key idea is to use the superconnection formalism as in the local family index theorem.
Nous annonçons des résultats sur le développement asymptotique du noyau de Bergman en famille. L'idée principale est d'utiliser le formalisme des superconnexions comme dans la preuve du théorème de l'indice local en famille.
Accepted:
Published online:
Xiaonan Ma 1; Weiping Zhang 2
@article{CRMATH_2007__344_1_41_0, author = {Xiaonan Ma and Weiping Zhang}, title = {Superconnection and family {Bergman} kernels}, journal = {Comptes Rendus. Math\'ematique}, pages = {41--44}, publisher = {Elsevier}, volume = {344}, number = {1}, year = {2007}, doi = {10.1016/j.crma.2006.11.013}, language = {en}, }
Xiaonan Ma; Weiping Zhang. Superconnection and family Bergman kernels. Comptes Rendus. Mathématique, Volume 344 (2007) no. 1, pp. 41-44. doi : 10.1016/j.crma.2006.11.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.11.013/
[1] Curvature of vector bundles associated to holomorphic fibrations, 2005 | arXiv
[2] The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math., Volume 83 (1986) no. 1, pp. 91-151
[3] Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants, Comm. Math. Phys., Volume 115 (1988) no. 2, pp. 301-351
[4] Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom., Volume 1 (1992) no. 4, pp. 647-684
[5] The asymptotics of the Ray–Singer analytic torsion associated with high powers of a positive line bundle, Comm. Math. Phys., Volume 125 (1989) no. 2, pp. 355-367
[6] On the asymptotic expansion of Bergman kernel, J. Differential Geom., Volume 72 (2006) no. 1, pp. 1-41 (announced in C. R. Math. Acad. Sci. Paris, 339, 3, 2004, pp. 193-198)
[7] Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 13-33
[8] Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math., Volume 24 (1987) no. 2, pp. 227-252
[9] The Dirac operator on high tensor powers of a line bundle, Math. Z., Volume 240 (2002) no. 3, pp. 651-664
[10] Generalized Bergman kernels on symplectic manifolds, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 7, pp. 493-498 (The full version:) | arXiv
[11] Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, vol. 254, Birkhäuser Boston, Boston, MA, 2007
[12] X. Ma, W. Zhang, Superconnection and family Bergman kernels, in press
[13] The Monge–Ampère operator and geodesics in the space of Kähler potentials, 2005 | arXiv
[14] Complex Monge–Ampère and symplectic manifolds, Amer. J. Math., Volume 114 (1992) no. 3, pp. 495-550
Cited by Sources:
Comments - Policy