We study the nonlinear Dirichlet problem in Ω, on ∂Ω, where Ω is a bounded domain in with smooth boundary, while p, q and r are real numbers satisfying , , . The main result of this Note establishes that for any this boundary value problem has infinitely many solutions in the Orlicz–Sobolev space , where .
On étudie le problème de Dirichlet non linéaire dans Ω, sur ∂Ω, où Ω est un domaine borné, régulier et p, q, r sont des nombres réels tels que , , . Le résultat principal de cette Note montre que pour tout ce problème admet une infinité de solutions dans l'espace d'Orlicz–Sobolev , où .
Accepted:
Published online:
Mihai Mihăilescu 1; Vicenţiu Rădulescu 1
@article{CRMATH_2007__344_1_15_0, author = {Mihai Mih\u{a}ilescu and Vicen\c{t}iu R\u{a}dulescu}, title = {Nonhomogeneous boundary value problems in {Orlicz{\textendash}Sobolev} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {15--20}, publisher = {Elsevier}, volume = {344}, number = {1}, year = {2007}, doi = {10.1016/j.crma.2006.11.020}, language = {en}, }
Mihai Mihăilescu; Vicenţiu Rădulescu. Nonhomogeneous boundary value problems in Orlicz–Sobolev spaces. Comptes Rendus. Mathématique, Volume 344 (2007) no. 1, pp. 15-20. doi : 10.1016/j.crma.2006.11.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.11.020/
[1] On the Orlicz–Sobolev imbedding theorem, J. Funct. Anal., Volume 24 (1977), pp. 241-257
[2] Dual variational methods in critical point theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349-381
[3] A sharp embedding theorem for Orlicz–Sobolev spaces, Indiana Univ. Math. J., Volume 45 (1996), pp. 39-65
[4] Mountain pass type solutions for quasilinear elliptic equations, Calc. Var., Volume 11 (2000), pp. 33-62
[5] Existence of solutions to a semilinear elliptic system through Orlicz–Sobolev spaces, Mediterr. J. Math., Volume 1 (2004), pp. 241-267
[6] Orlicz–Sobolev spaces and imbedding theorems, J. Funct. Anal., Volume 8 (1971), pp. 52-75
[7] On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz–Sobolev space setting, Nonlinear Differential Equations Appl. (NoDEA), Volume 6 (1999), pp. 207-225
[8] A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. London Ser. A: Math. Phys. Eng. Sci., Volume 462 (2006), pp. 2625-2641
[9] M. Mihăilescu, V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., in press
[10] M. Mihăilescu, V. Rădulescu, Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz–Sobolev space setting, J. Math. Anal. Appl., in press, | DOI
[11] Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, Providence, RI, 1984 (Expository Lectures from the CBMS Regional Conference held at the University of Miami)
[12] Theory of Orlicz Spaces, Marcel Dekker, New York, 1991
[13] Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000
Cited by Sources:
Comments - Policy