We study magnetic pseudodifferential operators associated with elliptic symbols and with anisotropic potentials. We prove affiliation to suitable -algebras and give formulae for the essential spectrum as a union of spectra of some asymptotic operators.
Nous étudions des opérateurs pseudodifférentiels magnétiques associés à des symboles elliptiques et ayant des potentiels anisotropes. Nous démontrons leur affiliation à certaines -algèbres et nous donnons des formules pour le spectre essentiel comme une union des spectres de certains opérateurs asymptotiques.
Accepted:
Published online:
Marius Măntoiu 1; Radu Purice 1; Serge Richard 2
@article{CRMATH_2007__344_1_11_0, author = {Marius M\u{a}ntoiu and Radu Purice and Serge Richard}, title = {On the essential spectrum of magnetic pseudodifferential operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {11--14}, publisher = {Elsevier}, volume = {344}, number = {1}, year = {2007}, doi = {10.1016/j.crma.2006.11.001}, language = {en}, }
TY - JOUR AU - Marius Măntoiu AU - Radu Purice AU - Serge Richard TI - On the essential spectrum of magnetic pseudodifferential operators JO - Comptes Rendus. Mathématique PY - 2007 SP - 11 EP - 14 VL - 344 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2006.11.001 LA - en ID - CRMATH_2007__344_1_11_0 ER -
Marius Măntoiu; Radu Purice; Serge Richard. On the essential spectrum of magnetic pseudodifferential operators. Comptes Rendus. Mathématique, Volume 344 (2007) no. 1, pp. 11-14. doi : 10.1016/j.crma.2006.11.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.11.001/
[1] -Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Birkhäuser, Basel, 1996
[2] Propagation properties for Schrödinger operators affiliated with certain -algebras, Ann. Inst. H. Poincaré, Volume 3 (2002), pp. 1215-1232
[3] Crossed products of -algebras and spectral analysis of quantum Hamiltonians, Comm. Math. Phys., Volume 228 (2002), pp. 519-560
[4] Localizations at infinity and essential spectrum of quantum Hamiltonians: I. General theory, Rev. Math. Phys., Volume 18 (2006), pp. 417-483
[5] Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier, Volume 38 (1988), pp. 95-112
[6] Symplectic areas, quantization and dynamics in electromagnetic fields, J. Math. Phys., Volume 43 (2002), pp. 756-788
[7] The essential spectrum of Schrödinger, Jacobi, and CMV operators, J. Anal. Math., Volume 98 (2006), pp. 183-220
[8] The magnetic Weyl calculus, J. Math. Phys., Volume 45 (2004), pp. 1394-1417
[9] Twisted crossed products and magnetic pseudodifferential operators, Advances in Operator Algebras and Mathematical Physics, Theta Foundation, 2005, pp. 137-172
[10] M. Măntoiu, R. Purice, S. Richard, Spectral and propagation results for magnetic Schrödinger operators; a -algebraic framework, Preprint mp_arc 05-84
[11] Essential spectrum of perturbed pseudodifferential operators. Applications to the Schrödinger, Klein–Gordon, and Dirac operators, Russian J. Math. Phys., Volume 12 (2005), pp. 62-80
Cited by Sources:
Comments - Policy