Comptes Rendus
Probability Theory
Inequalities for characteristic functions involving Fisher information
Comptes Rendus. Mathématique, Volume 344 (2007) no. 5, pp. 327-330.

We establish several inequalities for characteristic functions (Fourier transform of probability densities) in terms of the Fisher information. As applications, we illustrate their significance in estimating the survival probability of a quantum state (Schrödinger wave function).

Nous établissons plusieurs inégalités concernant les fonctions caractéristiques (les transformées de Fourier des densités de probabilité) à l'aide de l'information de Fisher. En application, nous montrons la signification des ces inégalités dans l'estimation de la probabilité de survie d'un état quantique (fonction d'onde de Schrödinger).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.01.008

Zhengmin Zhang 1

1 School of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6, Canada
@article{CRMATH_2007__344_5_327_0,
     author = {Zhengmin Zhang},
     title = {Inequalities for characteristic functions involving {Fisher} information},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {327--330},
     publisher = {Elsevier},
     volume = {344},
     number = {5},
     year = {2007},
     doi = {10.1016/j.crma.2007.01.008},
     language = {en},
}
TY  - JOUR
AU  - Zhengmin Zhang
TI  - Inequalities for characteristic functions involving Fisher information
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 327
EP  - 330
VL  - 344
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2007.01.008
LA  - en
ID  - CRMATH_2007__344_5_327_0
ER  - 
%0 Journal Article
%A Zhengmin Zhang
%T Inequalities for characteristic functions involving Fisher information
%J Comptes Rendus. Mathématique
%D 2007
%P 327-330
%V 344
%N 5
%I Elsevier
%R 10.1016/j.crma.2007.01.008
%G en
%F CRMATH_2007__344_5_327_0
Zhengmin Zhang. Inequalities for characteristic functions involving Fisher information. Comptes Rendus. Mathématique, Volume 344 (2007) no. 5, pp. 327-330. doi : 10.1016/j.crma.2007.01.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.01.008/

[1] H. Cramér Mathematical Methods of Statistics, Princeton University Press, New Jersey, 1946

[2] W. Feller An Introduction to Probability and its Applications, vol. 2, John Wiley & Sons, New York, 1971

[3] E.A. Gislason; N.H. Sabelli; J.W. Wood New forms of the time-energy uncertainty relation, Phys. Rev. A, Volume 31 (1985), pp. 2078-2081

[4] J.L. Hodges; E.L. Lehmann The efficiency of some nonparametric competitors of the t-test, Ann. Math. Statist., Volume 27 (1956), pp. 324-335

[5] P.L. Lions; G. Toscani A strengthened central limit theorem for smooth densities, J. Funct. Anal., Volume 129 (1995), pp. 148-167

[6] E. Lukacs Characteristic Functions, Griffin, London, 1970

[7] S. Luo; Z. Wang; Q. Zhang An inequality for characteristic functions and its applications to uncertainty relations and the quantum Zeno effect, J. Phys. A, Volume 35 (2002), pp. 5935-5941

[8] S. Luo; Z. Zhang Estimating the first zero of a characteristic function, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 203-206

[9] S. Luo; Z. Zhang On decaying rate of quantum states, Lett. Math. Phys., Volume 71 (2005), pp. 1-11

[10] S. Luo; Z. Zhang An extremal problem for Fourier transforms of probabilities, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005), pp. 293-296

[11] M.O. Onicescu Énergie informationnelle, C. R. Acad. Sci. Paris, Ser. I, Volume 263 (1966), pp. 841-842

Cited by Sources:

Comments - Policy