We establish several inequalities for characteristic functions (Fourier transform of probability densities) in terms of the Fisher information. As applications, we illustrate their significance in estimating the survival probability of a quantum state (Schrödinger wave function).
Nous établissons plusieurs inégalités concernant les fonctions caractéristiques (les transformées de Fourier des densités de probabilité) à l'aide de l'information de Fisher. En application, nous montrons la signification des ces inégalités dans l'estimation de la probabilité de survie d'un état quantique (fonction d'onde de Schrödinger).
Accepted:
Published online:
Zhengmin Zhang 1
@article{CRMATH_2007__344_5_327_0, author = {Zhengmin Zhang}, title = {Inequalities for characteristic functions involving {Fisher} information}, journal = {Comptes Rendus. Math\'ematique}, pages = {327--330}, publisher = {Elsevier}, volume = {344}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.01.008}, language = {en}, }
Zhengmin Zhang. Inequalities for characteristic functions involving Fisher information. Comptes Rendus. Mathématique, Volume 344 (2007) no. 5, pp. 327-330. doi : 10.1016/j.crma.2007.01.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.01.008/
[1] Mathematical Methods of Statistics, Princeton University Press, New Jersey, 1946
[2] An Introduction to Probability and its Applications, vol. 2, John Wiley & Sons, New York, 1971
[3] New forms of the time-energy uncertainty relation, Phys. Rev. A, Volume 31 (1985), pp. 2078-2081
[4] The efficiency of some nonparametric competitors of the t-test, Ann. Math. Statist., Volume 27 (1956), pp. 324-335
[5] A strengthened central limit theorem for smooth densities, J. Funct. Anal., Volume 129 (1995), pp. 148-167
[6] Characteristic Functions, Griffin, London, 1970
[7] An inequality for characteristic functions and its applications to uncertainty relations and the quantum Zeno effect, J. Phys. A, Volume 35 (2002), pp. 5935-5941
[8] Estimating the first zero of a characteristic function, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 203-206
[9] On decaying rate of quantum states, Lett. Math. Phys., Volume 71 (2005), pp. 1-11
[10] An extremal problem for Fourier transforms of probabilities, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005), pp. 293-296
[11] Énergie informationnelle, C. R. Acad. Sci. Paris, Ser. I, Volume 263 (1966), pp. 841-842
Cited by Sources:
Comments - Policy