Comptes Rendus
Differential Geometry
Elliptic genera of level N on complex π2-finite manifolds
Comptes Rendus. Mathématique, Volume 344 (2007) no. 5, pp. 317-320.

We prove the rigidity of the elliptic genera of level N on complex manifolds with finite second homotopy group admitting circle actions, and the vanishing of the Hilbert polynomial of its canonical bundle.

On montre la rigidité des genres elliptiques de niveau N sur les variétés complexes avec deuxième groupe d'homotopie fini et dotées d'actions de S1, et l'annulation du polynôme de Hilbert de son fibré vectoriel canonique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.01.020

Rafael Herrera 1

1 Centro de Investigación en Matemáticas, A.P. 402, Guanajuato, Gto., C.P. 36000, Mexico
@article{CRMATH_2007__344_5_317_0,
     author = {Rafael Herrera},
     title = {Elliptic genera of level {\protect\emph{N}} on complex $ {\pi }_{2}$-finite manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {317--320},
     publisher = {Elsevier},
     volume = {344},
     number = {5},
     year = {2007},
     doi = {10.1016/j.crma.2007.01.020},
     language = {en},
}
TY  - JOUR
AU  - Rafael Herrera
TI  - Elliptic genera of level N on complex $ {\pi }_{2}$-finite manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 317
EP  - 320
VL  - 344
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2007.01.020
LA  - en
ID  - CRMATH_2007__344_5_317_0
ER  - 
%0 Journal Article
%A Rafael Herrera
%T Elliptic genera of level N on complex $ {\pi }_{2}$-finite manifolds
%J Comptes Rendus. Mathématique
%D 2007
%P 317-320
%V 344
%N 5
%I Elsevier
%R 10.1016/j.crma.2007.01.020
%G en
%F CRMATH_2007__344_5_317_0
Rafael Herrera. Elliptic genera of level N on complex $ {\pi }_{2}$-finite manifolds. Comptes Rendus. Mathématique, Volume 344 (2007) no. 5, pp. 317-320. doi : 10.1016/j.crma.2007.01.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.01.020/

[1] R. Bott; T. Taubes On the rigidity theorems of Witten, J. Amer. Math. Soc., Volume 2 (1989) no. 1, pp. 137-186

[2] G.E. Bredon Representations at fixed points of smooth actions of compact groups, Ann. of Math., Volume 89 (1969) no. 2, pp. 515-532

[3] H. Herrera; R. Herrera Aˆ-genus on non-spin manifolds with S1 actions and the classification of positive quaternion-Kähler 12-manifolds, J. Differential Geometry, Volume 61 (2002) no. 3, pp. 341-364

[4] F. Hirzebruch Elliptic genera of level N for complex manifolds, Como, 1987 (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume vol. 250, Kluwer Acad. Publ., Dordrecht (1988), pp. 37-63

[5] I.M. Krichever Generalized elliptic genera and Baker–Akhiezer functions, Mat. Zametki, Volume 47 (1990) no. 2, pp. 34-45 158 (in Russian); Translation in Math. Notes, 47, 1–2, 1990, pp. 132-142

[6] S. Ochanine Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology, Volume 26 (1987), pp. 143-151

[7] C.H. Taubes S1 actions and elliptic genera, Comm. Math. Phys., Volume 122 (1989) no. 3, pp. 455-526

[8] E. Witten Elliptic genera and quantum field theory, Comm. Math. Phys., Volume 109 (1987), p. 525

[9] E. Witten The index of the Dirac operator on loop space (P.S. Landweber, ed.), Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 161-181

Cited by Sources:

Comments - Policy