[Rigidite locale des restrictions de flots des chambres de Weyl]
Dans cette Note on étudie des exemples d'actions partiellement hyperboliques : restrictions de flots des chambres de Weyl sur la variété (). Nous démontrons que, génériquement, les restrictions de rang ⩾2 sont localement rigides. Notre approche combine la géométrie des feuilletages invariants et les propriétés algébriques du groupe . Cette approche est aussi applicable dans la démonstration de la rigidité locale des restrictions des autres flots des chambres de Weyl.
In this Note we consider examples of partially hyperbolic actions: restrictions of Weyl chamber flows on (). We show that generic restrictions of rank at least two are locally rigid. Our approach combines the geometry of the invariant foliations for the action and the algebraic properties of the group . The method is applicable to restrictions of Weyl chamber flows on other homogeneous spaces.
Accepté le :
Publié le :
Danijela Damjanović 1 ; Anatole Katok 2
@article{CRMATH_2007__344_8_503_0, author = {Danijela Damjanovi\'c and Anatole Katok}, title = {Local rigidity of restrictions of {Weyl} chamber flows}, journal = {Comptes Rendus. Math\'ematique}, pages = {503--508}, publisher = {Elsevier}, volume = {344}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.03.009}, language = {en}, }
Danijela Damjanović; Anatole Katok. Local rigidity of restrictions of Weyl chamber flows. Comptes Rendus. Mathématique, Volume 344 (2007) no. 8, pp. 503-508. doi : 10.1016/j.crma.2007.03.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.03.009/
[1] Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., Volume 38 (1974), pp. 170-212 (in Russian)
[2] D. Damjanović, Central extensions of some simple Lie groups and rigidity of some partially hyperbolic algebraic actions, submitted for publication
[3] Local rigidity of actions of higher rank Abelian groups and KAM method, ERA–AMS, Volume 10 (2004), pp. 142-154
[4] Local rigidity of partially hyperbolic actions I. KAM method and actions on the torus www.math.psu.edu/katok_a/papers.html (submitted for publication)
[5] Periodic cycle functionals and Cocycle rigidity for certain partially hyperbolic actions, Discr. Contin. Dyn. Syst., Volume 13 (2005), pp. 985-1005
[6] D. Damjanović, A. Katok, Local rigidity of partially hyperbolic actions, II. Restrictions of Weyl chamber flows on and algebraic K-theory, submitted for publication, www.math.psu.edu/katok_a/papers.html
[7] Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Res. Lett., Volume 5 (1998), pp. 149-163
[8] Invariant Manifolds, Lecture Notes in Mathematics, vol. 583, Springer-Verlag, Berlin, 1977
[9] Cocycle stability for partially hyperbolic systems, Math. Res. Lett., Volume 3 (1996), pp. 191-210
[10] Subelliptic estimates of polynomial differential operators and applications to rigidity of Abelian actions, Math. Res. Lett., Volume 1 (1994), pp. 193-202
[11] Differential rigidity of Anosov actions of higher rank Abelian groups and algebraic lattice actions, Proc. Steklov Inst. Math., Volume 216 (1997), pp. 287-314
[12] Introduction to Algebraic K-Theory, Princeton University Press, 1971
[13] R. Steinberg, Générateurs, relations et revêtements de groupes algébriques, in: Colloq. théorie des groupes algébriques, Bruxelles, 1962, pp. 113–127
Cité par Sources :
Commentaires - Politique