[Foliations stables et lisses des difféomorphismes d’Anosov]
Dans cet article, nous nous concentrons sur la rigidité des foliations stables de codimension un des difféomorphismes d’Anosov en . Plus précisément, nous montrons que si la régularité de ces foliations est légèrement supérieure à 2, alors elles auront la même régularité que les difféomorphismes.
In this paper, we focus on the rigidity of -smooth codimension-one stable foliations of Anosov diffeomorphisms. Specifically, we show that if the regularity of these foliations is slightly bigger than 2, then they will have the same smoothness of the diffeomorphisms.
Révisé le :
Accepté le :
Publié le :
Keywords: Anosov diffeomorphism, stable foliation, rigidity
Mots-clés : difféomorphisme d’Anosov, foliation stables, rigidité
Ruihao Gu 1
@article{CRMATH_2024__362_G12_1763_0, author = {Ruihao Gu}, title = {Smooth {Stable} {Foliations} of {Anosov} {Diffeomorphisms}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1763--1771}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.679}, language = {en}, }
Ruihao Gu. Smooth Stable Foliations of Anosov Diffeomorphisms. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1763-1771. doi : 10.5802/crmath.679. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.679/
[1] Rigidity of Stable Lyapunov Exponents and Integrability for Anosov Maps, Commun. Math. Phys., Volume 402 (2023) no. 3, pp. 2831-2877 | DOI | MR | Zbl
[2] Geodesic flows on closed Riemannian manifolds of negative curvature, Tr. Mat. Inst. Steklova, Volume 90 (1967), pp. 1-209 | MR | Zbl
[3] Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems, Commun. Math. Phys., Volume 150 (1992) no. 2, pp. 289-320 | DOI | MR | Zbl
[4] Rigidity of symplectic Anosov diffeomorphisms on low-dimensional tori, Ergodic Theory Dyn. Syst., Volume 11 (1991) no. 3, pp. 427-441 | DOI | MR | Zbl
[5] Anosov diffeomorphisms, Global Analysis (Berkeley, Calif., 1968) (Proceedings of Symposia in Pure Mathematics), Volume 14, American Mathematical Society (1970), pp. 61-93 | MR | Zbl
[6] -differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus, Discrete Contin. Dyn. Syst., Volume 22 (2008) no. 1-2, pp. 183-200 | DOI | MR | Zbl
[7] Rigidité différentiable des groupes fuchsiens, Publ. Math., Inst. Hautes Étud. Sci., Volume 78 (1993), pp. 163-185 | DOI | Numdam | MR | Zbl
[8] Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Publ. Math., Inst. Hautes Étud. Sci., Volume 72 (1990), pp. 5-61 | DOI | Numdam | MR | Zbl
[9] Smoothness of horocycle foliations, J. Differ. Geom., Volume 10 (1975), pp. 225-238 | DOI | MR | Zbl
[10] A regularity lemma for functions of several variables, Rev. Mat. Iberoam., Volume 4 (1988) no. 2, pp. 187-193 | DOI | MR | Zbl
[11] The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dyn. Syst., Volume 9 (1989) no. 4, pp. 643-680 | DOI | MR | Zbl
[12] Herman’s theory revisited, Invent. Math., Volume 178 (2009) no. 2, pp. 333-344 | DOI | MR | Zbl
[13] There are no new Anosov diffeomorphisms on tori, Am. J. Math., Volume 96 (1974), pp. 422-429 | DOI | MR | Zbl
[14] On codimension one Anosov diffeomorphisms, Am. J. Math., Volume 92 (1970), pp. 761-770 | DOI | MR | Zbl
[15] Lectures on partial hyperbolicity and stable ergodicity, Zürich Lectures in Advanced Mathematics, European Mathematical Society, 2004, vi+122 pages | DOI | MR | Zbl
[16] Hölder foliations, Duke Math. J., Volume 86 (1997) no. 3, pp. 517-546 | DOI | MR | Zbl
[17] Stable ergodicity of certain linear automorphisms of the torus, Ann. Math., Volume 162 (2005) no. 1, pp. 65-107 | DOI | MR | Zbl
[18] Diophantine approximation, Lecture Notes in Mathematics, 785, Springer, 1980, x+299 pages | MR | Zbl
[19] Differentiable dynamical systems, Bull. Am. Math. Soc., Volume 73 (1967), pp. 747-817 | DOI | MR | Zbl
[20] Lyapunov exponents and rigidity of Anosov automorphisms and skew products, Adv. Math., Volume 355 (2019), 106764, 45 pages | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique