[Foliations stables et lisses des difféomorphismes d’Anosov]
In this paper, we focus on the rigidity of
Dans cet article, nous nous concentrons sur la rigidité des foliations stables de codimension un des difféomorphismes d’Anosov en
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.679
Keywords: Anosov diffeomorphism, stable foliation, rigidity
Mots-clés : difféomorphisme d’Anosov, foliation stables, rigidité
Ruihao Gu 1

@article{CRMATH_2024__362_G12_1763_0, author = {Ruihao Gu}, title = {Smooth {Stable} {Foliations} of {Anosov} {Diffeomorphisms}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1763--1771}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.679}, zbl = {07949983}, language = {en}, }
Ruihao Gu. Smooth Stable Foliations of Anosov Diffeomorphisms. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1763-1771. doi : 10.5802/crmath.679. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.679/
[1] Rigidity of Stable Lyapunov Exponents and Integrability for Anosov Maps, Commun. Math. Phys., Volume 402 (2023) no. 3, pp. 2831-2877 | DOI | MR | Zbl
[2] Geodesic flows on closed Riemannian manifolds of negative curvature, Tr. Mat. Inst. Steklova, Volume 90 (1967), pp. 1-209 | MR | Zbl
[3] Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems, Commun. Math. Phys., Volume 150 (1992) no. 2, pp. 289-320 | DOI | MR | Zbl
[4] Rigidity of symplectic Anosov diffeomorphisms on low-dimensional tori, Ergodic Theory Dyn. Syst., Volume 11 (1991) no. 3, pp. 427-441 | DOI | MR | Zbl
[5] Anosov diffeomorphisms, Global Analysis (Berkeley, Calif., 1968) (Proceedings of Symposia in Pure Mathematics), Volume 14, American Mathematical Society (1970), pp. 61-93 | MR | Zbl
[6]
[7] Rigidité différentiable des groupes fuchsiens, Publ. Math., Inst. Hautes Étud. Sci., Volume 78 (1993), pp. 163-185 | DOI | Numdam | MR | Zbl
[8] Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Publ. Math., Inst. Hautes Étud. Sci., Volume 72 (1990), pp. 5-61 | DOI | Numdam | MR | Zbl
[9] Smoothness of horocycle foliations, J. Differ. Geom., Volume 10 (1975), pp. 225-238 | DOI | MR | Zbl
[10] A regularity lemma for functions of several variables, Rev. Mat. Iberoam., Volume 4 (1988) no. 2, pp. 187-193 | DOI | MR | Zbl
[11] The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dyn. Syst., Volume 9 (1989) no. 4, pp. 643-680 | DOI | MR | Zbl
[12] Herman’s theory revisited, Invent. Math., Volume 178 (2009) no. 2, pp. 333-344 | DOI | MR | Zbl
[13] There are no new Anosov diffeomorphisms on tori, Am. J. Math., Volume 96 (1974), pp. 422-429 | DOI | MR | Zbl
[14] On codimension one Anosov diffeomorphisms, Am. J. Math., Volume 92 (1970), pp. 761-770 | DOI | MR | Zbl
[15] Lectures on partial hyperbolicity and stable ergodicity, Zürich Lectures in Advanced Mathematics, European Mathematical Society, 2004, vi+122 pages | DOI | MR | Zbl
[16] Hölder foliations, Duke Math. J., Volume 86 (1997) no. 3, pp. 517-546 | DOI | MR | Zbl
[17] Stable ergodicity of certain linear automorphisms of the torus, Ann. Math., Volume 162 (2005) no. 1, pp. 65-107 | DOI | MR | Zbl
[18] Diophantine approximation, Lecture Notes in Mathematics, 785, Springer, 1980, x+299 pages | MR | Zbl
[19] Differentiable dynamical systems, Bull. Am. Math. Soc., Volume 73 (1967), pp. 747-817 | DOI | MR | Zbl
[20] Lyapunov exponents and rigidity of Anosov automorphisms and skew products, Adv. Math., Volume 355 (2019), 106764, 45 pages | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique