Comptes Rendus
Physique mathématique
Probabilités et fluctuations quantiques
Comptes Rendus. Mathématique, Volume 344 (2007) no. 10, pp. 663-668.

Cette Note esquisse une construction mathématique simple et naturelle du caractère probabiliste de la mécanique quantique. Elle utilise l'analyse non standard et repose sur l'interprétation due à Feynman, mise en avant dans certaines approches fractales, du principe d'incertitude de Heisenberg, c'est-à-dire des fluctuations quantiques. On aboutit ainsi à des équations différentielles stochastiques, comme dans la mécanique stochastique de Nelson, découlant de marches aléatoires infinitésimales.

This Note is sketching a simple and natural mathematical construction for explaining the probabilistic nature of quantum mechanics. It employs nonstandard analysis and is based on Feynman's interpretation of the Heisenberg uncertainty principle, i.e., of the quantum fluctuations, which was brought to the forefront in some fractal approaches. It results, as in Nelson's stochastic mechanics, in stochastic differential equations which are deduced from infinitesimal random walks.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.04.001
Michel Fliess 1

1 Projet ALIEN, INRIA Futurs & Équipe MAX, LIX (CNRS, UMR 7161), École polytechnique, 91128 Palaiseau cedex, France
@article{CRMATH_2007__344_10_663_0,
     author = {Michel Fliess},
     title = {Probabilit\'es et fluctuations quantiques},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {663--668},
     publisher = {Elsevier},
     volume = {344},
     number = {10},
     year = {2007},
     doi = {10.1016/j.crma.2007.04.001},
     language = {fr},
}
TY  - JOUR
AU  - Michel Fliess
TI  - Probabilités et fluctuations quantiques
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 663
EP  - 668
VL  - 344
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2007.04.001
LA  - fr
ID  - CRMATH_2007__344_10_663_0
ER  - 
%0 Journal Article
%A Michel Fliess
%T Probabilités et fluctuations quantiques
%J Comptes Rendus. Mathématique
%D 2007
%P 663-668
%V 344
%N 10
%I Elsevier
%R 10.1016/j.crma.2007.04.001
%G fr
%F CRMATH_2007__344_10_663_0
Michel Fliess. Probabilités et fluctuations quantiques. Comptes Rendus. Mathématique, Volume 344 (2007) no. 10, pp. 663-668. doi : 10.1016/j.crma.2007.04.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.04.001/

[1] S. Albeverio; J.E. Fenstad; R. Hoegh-Krøhn; T. Lindstrøm Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, Orlando, FL, 1986

[2] S. Albeverio; K. Yasue; J.C. Zambrini Euclidean quantum mechanics: analytical approach, Ann. Inst. H. Poincaré Phys. Théor., Volume 50 (1989), pp. 259-308

[3] J.-P. Badiali Entropy, time-irreversibility and the Schrödinger equation in a primarily discrete spacetime, J. Phys. A: Math. Gen., Volume 38 (2005), pp. 2835-2847

[4] E. Benoît, Diffusions discrètes et mécanique stochastique, Prépubli. Lab. Math. J. Dieudonné, Université de Nice, 1989

[5] E. Benoît Random walks and stochastic differential equations (F. Diener; M. Diener, eds.), Nonstandard Analysis in Practice, Springer, Berlin, 1995, pp. 71-90

[6] M. Bitbol L'aveuglante proximité du réel, Flammarion, Paris, 1998

[7] P. Blanchard; P. Combe; W. Zheng Mathematical and Physical Aspects of Stochastic Mechanics, Lecture Notes in Physics, vol. 281, Springer, Berlin, 1987

[8] K.L. Chung; J.C. Zambrini Introduction to Random Time and Quantum Randomness, World Scientific, Singapour, 2003

[9] J. Cresson; S. Darses Plongement stochastique des systèmes lagrangiens, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 333-336

[10] J. Cresson; S. Darses Théorème de Noether stochastique, C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007), pp. 259-264

[11] M. Davidson, Stochastic mechanics, trace dynamics, and differential space – a synthesis, Prépublication, 2006. Accessible sur | arXiv

[12] I. Fényes Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik, Z. Phys., Volume 132 (1952), pp. 81-106

[13] R.P. Feynman Space–time approach to non-relativistic quantum mechanics, Rev. Modern Phys., Volume 22 (1948), pp. 367-387

[14] R.P. Feynman; A.R. Hibbs Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965

[15] P. Flandrin Temps-fréquence, Hermès, Paris, 1998

[16] M. Fliess Analyse non standard du bruit, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 797-802

[17] M. Fliess, Une approche intrinsèque des fluctuations quantiques en mécanique stochastique, Manuscrit, 2006. Accessible sur http://hal.inria.fr/inria-00118460

[18] L. Fritsche; M. Haugk A new look at the derivation of the Schrödinger equation from Newtonian mechanics, Ann. Physik, Volume 12 (2003), pp. 371-403

[19] S. Gudder Hyperfinite quantum random walks, Chaos Solitons Fractals, Volume 7 (1996), pp. 669-679

[20] F. Guerra; L.M. Morato Quantization of dynamical systems and stochastic control theory, Phys. Rev. D, Volume 27 (1983), pp. 1774-1786

[21] H. Kröger Fractal geometry in quantum mechanics, field theory and spin systems, Phys. Rep., Volume 323 (2000), pp. 81-181

[22] E. Nelson Derivation of the Schrödinger equation from Newtonian mechanics, Phys. Rev., Volume 150 (1966), pp. 1079-1085

[23] E. Nelson Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, NJ, 1967 (2e éd., datant de 2001, accessible sur http://www.math.princeton.edu/%7Enelson/books/bmotion.pdf)

[24] E. Nelson Internal set theory, Bull. Amer. Math. Soc., Volume 83 (1977), pp. 1165-1198

[25] E. Nelson Quantum Fluctuations, Princeton University Press, Princeton, NJ, 1985 (Accessible sur http://www.math.princeton.edu/%7Enelson/books/qf.pdf)

[26] E. Nelson Radically Elementary Probability Theory, Princeton University Press, Princeton, NJ, 1987 (Accessible sur http://www.math.princeton.edu/%7Enelson/books/rept.pdf)

[27] L. Nottale Fractal Space–Time and Microphysics, World Scientific, Singapour, 1993

[28] G.N. Ord; A.S. Deakin Random walks, continuum limits, and Schrödinger's equation, Phys. Rev. A, Volume 54 (1996), pp. 3772-3778

[29] G.N. Ord; R.B. Mann Entwined pairs and Schrödinger's equation, Ann. Physics, Volume 308 (2003), pp. 478-492

[30] O. Oron; L.P. Horwitz Relativistic Brownian motion and gravity as an eikonal approximation to a quantum evolution equation, Foundat. Phys., Volume 35 (2005), pp. 1181-1203

[31] M. Pavon Stochastic mechanics and the Feynman integral, J. Math. Phys., Volume 41 (2000), pp. 6060-6078

[32] L. de la Peña; A.M. Cetto The Quantum Dice: An Introduction to Stochastic Electrodynamics, Kluwer, Dordrecht, 1996

[33] A. Robinson Non-Standard Analysis, North-Holland, Amsterdam, 1974

[34] L. Smolin Matrix models and non-local hidden variables theories (A. Elitzur; S. Dolev; N. Kolenda, eds.), Quo Vadis Quantum Mechanics, Springer, Berlin, 2005, pp. 121-152

[35] L. Smolin, Could quantum mechanics be an approximation to another theory?, Prépublication, 2006. Accessible sur | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Analyse non standard du bruit

Michel Fliess

C. R. Math (2006)


Théorème de Noether stochastique

Jacky Cresson; Sébastien Darses

C. R. Math (2007)