Comptes Rendus
Partial Differential Equations
Stable solutions of Δu=eu on RN
[Solutions stables de Δu=eu dans RN]
Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 63-66.

Cette Note porte sur l'étude des solutions de l'équation Δu=eu dans RN, N2. Nous démontrons la non-existence de solutions stables en dimension N9. En dimension N=2, nous prouvons aussi un théorème de classification pour les solutions stables à l'extérieur d'un compact.

In this Note we study C2 solutions of the equation Δu=eu on the entire Euclidean space RN, with N2. We prove the non-existence of stable solutions for N9. In the two-dimensional case we also demonstrate a classification theorem for solutions which are stable outside a compact set.

Reçu le :
Publié le :
DOI : 10.1016/j.crma.2007.05.021

Alberto Farina 1

1 LAMFA, CNRS UMR 6140, université de Picardie Jules-Verne, faculté de mathématiques et d'informatique, 33, rue Saint-Leu, 80039 Amiens, France
@article{CRMATH_2007__345_2_63_0,
     author = {Alberto Farina},
     title = {Stable solutions of $ -\mathrm{\Delta }u={\mathrm{e}}^{u}$ on $ {\mathbb{R}}^{N}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {63--66},
     publisher = {Elsevier},
     volume = {345},
     number = {2},
     year = {2007},
     doi = {10.1016/j.crma.2007.05.021},
     language = {en},
}
TY  - JOUR
AU  - Alberto Farina
TI  - Stable solutions of $ -\mathrm{\Delta }u={\mathrm{e}}^{u}$ on $ {\mathbb{R}}^{N}$
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 63
EP  - 66
VL  - 345
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2007.05.021
LA  - en
ID  - CRMATH_2007__345_2_63_0
ER  - 
%0 Journal Article
%A Alberto Farina
%T Stable solutions of $ -\mathrm{\Delta }u={\mathrm{e}}^{u}$ on $ {\mathbb{R}}^{N}$
%J Comptes Rendus. Mathématique
%D 2007
%P 63-66
%V 345
%N 2
%I Elsevier
%R 10.1016/j.crma.2007.05.021
%G en
%F CRMATH_2007__345_2_63_0
Alberto Farina. Stable solutions of $ -\mathrm{\Delta }u={\mathrm{e}}^{u}$ on $ {\mathbb{R}}^{N}$. Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 63-66. doi : 10.1016/j.crma.2007.05.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.021/

[1] L. Ambrosio; X. Cabré Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi, J. Amer. Math. Soc., Volume 13 (2000) no. 4, pp. 725-739

[2] A. Bahri; P.-L. Lions Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math., Volume 45 (1992) no. 9, pp. 1205-1215

[3] H. Brezis; F. Merle Uniform estimates and blow-up behavior for solutions of Δu=V(x)eu in two dimensions, Comm. Partial Differential Equations, Volume 16 (1991), pp. 1223-1253

[4] S. Chandrasekhar An Introduction to the Study of Stellar Structure, Dover Publications, Inc., New York, 1957

[5] W. Chen; C. Li Classification of solutions of some nonlinear elliptic equations, Duke Math. J., Volume 63 (1991), pp. 615-622

[6] E.N. Dancer Stable solutions on RN and the primary branch of some non-self-adjoint convex problems, Differential Integral Equations, 17 (2004), pp. 961-970

[7] E.N. Dancer, Finite Morse index solutions of exponential problems, preprint

[8] E. De Giorgi Convergence problems for functionals and operators, Rome, 1978, Pitagora, Bologna (1979), pp. 131-188

[9] L. Dupaigne, Personal communication

[10] V.R. Emden Gaskugeln, Anwendungen der mechanischen Warmetheorie auf kosmologische und meteorologische Probleme, Teubner-Verlag, Leipzig, 1907

[11] A. Farina Liouville-type results for solutions of Δu=|u|p1u on unbounded domains of RN, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005) no. 7, pp. 415-418

[12] A. Farina On the classification of solutions of the Lane–Emden equation on unbounded domains of RN, J. Math. Pures Appl., Volume 87 (2007) no. 5, pp. 537-561

[13] B. Gidas; J. Spruck A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, Volume 6 (1981) no. 8, pp. 883-901

[14] D.D. Joseph; T.S. Lundgren Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., Volume 49 (1972/73), pp. 241-269

Cité par Sources :

Commentaires - Politique