[Groupe fondamental du complément de la discriminante des singularités de Brieskorn–Pham]
En cette Note nous rapellons la monodromie de tresses pour le discriminants de singularités d'une hypersurface et nous présentons deux résultats de Lönne (2003) : la monodromie de tresses associée aux singularités de Brieskorn–Pham est donnée par un nombre fini de tresses, et nous en déduisons une très belle présentation finie du groupe fondamental d'un complément d'une discriminante.
In this Note we recall the braid monodromy of discriminants of hypersurface singularities and present two results from Lönne (2003): the braid monodromy associated to hypersurface singularities of Brieskorn–Pham type is given explicitly in terms of finitely many braids, and we show how this leads to very nice finite presentations of fundamental groups of the discriminant complements.
Accepté le :
Publié le :
Michael Lönne 1
@article{CRMATH_2007__345_2_93_0, author = {Michael L\"onne}, title = {Fundamental group of discriminant complements of {Brieskorn{\textendash}Pham} polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {93--96}, publisher = {Elsevier}, volume = {345}, number = {2}, year = {2007}, doi = {10.1016/j.crma.2007.05.022}, language = {en}, }
Michael Lönne. Fundamental group of discriminant complements of Brieskorn–Pham polynomials. Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 93-96. doi : 10.1016/j.crma.2007.05.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.022/
[1] Dynamical Systems VI, Springer, Berlin, 1993
[2] A new approach to the word and the conjugacy problems in the braid groups, Adv. Math., Volume 139 (1998), pp. 322-353
[3] Vue d'ensemble sur les problèmes de monodromie, Rencontre sur les Singularités en Géométrie Analytique, Inst. Études sci. de Cargèse, 1972 (Asterisque, Nos. 7 et 8), Soc. Math. France, Paris (1973), pp. 393-413
[4] Sulla costruzione delle funzioni algebriche di due variabili possedenti una data curva di diramazione, Ann. Mat. Pura Appl., Volume 1 (1924) no. 1, pp. 185-198
[5] Intersection matrices for certain singularities, Funct. Anal. Appl., Volume 7 (1973), pp. 182-193
[6] Twisted Picard-Lefschetz formulas, Funct. Anal. Appl., Volume 22 (1988) no. 1, pp. 10-18
[7] Monodromy groups and Hecke algebras, Uspekhi Mat. Nauk, Volume 42 (1987) no. 4, pp. 138-139
[8] Braids and Coverings, London Math. Soc. Student Texts, vol. 18, Cambridge Univ. Press, 1989
[9] The intersection matrix of Brieskorn singularities, Invent. Math., Volume 25 (1974), pp. 143-157
[10] On the fundamental group of an algebraic plane curve, Amer. J. Math., Volume 55 (1933), pp. 255-260
[11] Braid monodromy of hypersurface singularities, Habilitationsschrift, Hannover, 2003 | arXiv
[12] Stable branch curves and braid monodromies, Chicago, 1980 (Lecture Notes in Math.), Volume vol. 862, Springer, Heidelberg (1981), pp. 107-192
[13] Pseudo-homology of complex hypersurfaces, C. R. Acad. Sci. Paris Sér. I Math., Volume 328 (1999) no. 11, pp. 1025-1030
[14] Formules de Picard Lefschetz généralisées et ramification des intégrales, Bull. Soc. Math. France, Volume 93 (1965), pp. 333-367
[15] Un résultat sur la monodromie, Invent. Math., Volume 13 (1971), pp. 90-96
[16] On the Poicarē group of rational plane curves, Amer. J. Math., Volume 58 (1936), pp. 607-619
Cité par Sources :
Commentaires - Politique