Comptes Rendus
Differential Geometry
The Mass according to Arnowitt, Deser and Misner
Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 87-91.

For asymptotically Euclidean manifolds of order τ>(n2)/2, under the hypothesis that the mass m (according to Arnowitt, Deser and Misner) exists (in particular if the scalar curvature is ⩾0 and integrable), there exists a real number A>0 such that m4(n1)A on each end (except if the metric is Euclidean).

Pour une variété asymptotiquement euclidienne d'ordre τ>(n2)/2, sous l'hypothèse que la masse m (selon Arnowitt, Deser et Misner) existe (notamment si la courbure scalaire est ⩾0 et intégrable), il existe un réel A>0 tel que m>4(n1)A sur chaque bout (sauf si la métrique est euclidienne).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.06.004

Thierry Aubin 1

1 Université Pierre et Marie Curie, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRMATH_2007__345_2_87_0,
     author = {Thierry Aubin},
     title = {The {Mass} according to {Arnowitt,} {Deser} and {Misner}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {87--91},
     publisher = {Elsevier},
     volume = {345},
     number = {2},
     year = {2007},
     doi = {10.1016/j.crma.2007.06.004},
     language = {en},
}
TY  - JOUR
AU  - Thierry Aubin
TI  - The Mass according to Arnowitt, Deser and Misner
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 87
EP  - 91
VL  - 345
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2007.06.004
LA  - en
ID  - CRMATH_2007__345_2_87_0
ER  - 
%0 Journal Article
%A Thierry Aubin
%T The Mass according to Arnowitt, Deser and Misner
%J Comptes Rendus. Mathématique
%D 2007
%P 87-91
%V 345
%N 2
%I Elsevier
%R 10.1016/j.crma.2007.06.004
%G en
%F CRMATH_2007__345_2_87_0
Thierry Aubin. The Mass according to Arnowitt, Deser and Misner. Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 87-91. doi : 10.1016/j.crma.2007.06.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.004/

[1] R. Arnowitt; S. Deser; C.W. Misner Energy and the criteria for radiation in general relativity, Phys. Rev., Volume 118 (1960), pp. 1100-1104

[2] R. Arnowitt; S. Deser; C.W. Misner Coordinate invariance and energy expressions in general relativity, Phys. Rev., Volume 122 (1961), pp. 997-1006

[3] T. Aubin Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, New York, 1998

[4] T. Aubin Sur quelques problèmes de courbure scalaire, J. Func. Anal., Volume 240 (2006), pp. 269-289

[5] T. Aubin Démonstration de la conjecture de la masse positive, J. Func. Anal., Volume 242 (2007), pp. 78-85

[6] T. Aubin Solution complète de la C0 compacité de l'ensemble des solutions de l' équation de Yamabe, J. Func. Anal., Volume 244 (2007), pp. 579-589

[7] R. Bartnik The mass of an asymptotically flat manifold, Commun. Pure Appl. Math., Volume 34 (1986), pp. 661-693

[8] J. Cao The existence of generalized isothermal coordinates for higher dimensional Riemannian manifolds, Trans. Amer. Math. Soc., Volume 324 (1991), pp. 901-920

[9] M. Günther Conformal normal coordinates, Ann. Global Anal. Geom., Volume 11 (1993), pp. 173-184

[10] J.M. Lee; T.H. Parker The Yamabe problem, Bull. Amer. Math. Soc., Volume 17 (1987), pp. 37-91

[11] J. Lohkamp The higher dimensional positive mass theorem I, Aug 2006 | arXiv

[12] T. Parker; C. Taubes On Witten's proof of the positive energy theorem, Comm. Math. Phys., Volume 84 (1982), pp. 223-238

[13] R. Schoen Variational theory for the total scalar curvature functional for Riemannian metric and related topics, Topics in Calculus of Variation, Lectures Notes in Math., vol. 1365, Springer, Berlin, 1989

[14] R. Schoen; S.-T. Yau On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys., Volume 65 (1979), pp. 45-76

[15] R. Schoen; S.-T. Yau Proof of the positive masse theorem II, Comm. Math. Phys., Volume 79 (1981), p. 231

[16] E. Witten A simple proof of the positive energy theorem, Comm. Math. Phys., Volume 80 (1981), pp. 381-402

Cited by Sources:

Comments - Policy