[Uniform convergence of the estimator of an additive regression function under random censorship]
In this Note, we establish the optimal almost sure rate of convergence for an estimator of the additive regression function under random censorship. To build our estimator, we used the method of marginal integration coupled with an Inverse Probability of Censoring Weighted [I.P.C.W.] estimate.
Dans cette Note, nous proposons d'établir la vitesse de convergence presque sûre optimale d'un estimateur de la fonction de régression additive en données censurées. Pour construire nos estimateurs, nous utilisons la méthode d'intégration marginale associée à un estimateur de type Inverse Probability of Censoring Weighted [I.P.C.W.].
Accepted:
Published online:
Mohammed Debbarh 1; Vivian Viallon 1, 2
@article{CRMATH_2007__345_2_97_0, author = {Mohammed Debbarh and Vivian Viallon}, title = {Convergence uniforme d'un estimateur de la fonction de r\'egression additive en donn\'ees censur\'ees}, journal = {Comptes Rendus. Math\'ematique}, pages = {97--100}, publisher = {Elsevier}, volume = {345}, number = {2}, year = {2007}, doi = {10.1016/j.crma.2007.05.025}, language = {fr}, }
TY - JOUR AU - Mohammed Debbarh AU - Vivian Viallon TI - Convergence uniforme d'un estimateur de la fonction de régression additive en données censurées JO - Comptes Rendus. Mathématique PY - 2007 SP - 97 EP - 100 VL - 345 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2007.05.025 LA - fr ID - CRMATH_2007__345_2_97_0 ER -
Mohammed Debbarh; Vivian Viallon. Convergence uniforme d'un estimateur de la fonction de régression additive en données censurées. Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 97-100. doi : 10.1016/j.crma.2007.05.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.025/
[1] Convergence presque sûre de l'estimateur à noyau d'une fonction de régression additive sous une hypothèse de mélange, C. R. Acad. Sci. Paris, Sér. I, Volume 329 (1999) no. 1, pp. 75-78
[2] Additive time series: the kernel integration method, Math. Methods Statist., Volume 9 (2000) no. 4, pp. 358-375
[3] Partitioning-estimates of a regression function under random censoring, Statist. Decisions, Volume 13 (1995) no. 1, pp. 21-37
[4] On the rate of uniform convergence of the product-limit estimator: strong and weak laws, Ann. Statist., Volume 25 (1997) no. 3, pp. 1050-1087
[5] Uniform consistency of the kernel conditional Kaplan–Meier estimate, Ann. Statist., Volume 17 (1989) no. 3, pp. 1157-1167
[6] Mean square convergence for an estimator of the additive regression function under random censorship, C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007) no. 3, pp. 1205-1210
[7] P. Deheuvels and G. Derzko, Nonparametric estimation of conditional lifetime distributions under random censorship, in: Advances in Statistical Methods for the Health Sciences: Applications to Cancer and AIDS Studies, Genome Sequence Analysis and Survival Analysis, Springer, New York, 2006
[8] A lil type result for the product-limit estimator, Z. Wahrsch. Verw. Gebiete, Volume 56 (1981), pp. 75-86
[9] Functional laws of the iterated logarithm for the product-limit estimator of a distribution function under random censorship or truncation, Ann. Probab., Volume 18 (1990), pp. 160-189
[10] Versions of kernel-type regression estimators, J. Am. Statist. Assoc., Volume 89 (1994), pp. 825-832
[11] Nonparametric estimation from incomplete observations, J. Am. Statist. Assoc., Volume 53 (1958), pp. 457-481
[12] Prediction from randomly right censored data, J. Multivariate Anal., Volume 80 (2002) no. 1, pp. 73-100
Cited by Sources:
Comments - Policy