Comptes Rendus
Functional Analysis
Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds
[Flots gradients dans des espaces métriques à courbure minorée]
Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 151-154.

On présente dans cette Note quelques résultats nouveaux relatifs aux flots gradients associés aux fonctionnelles λ-convexes dans une large classe d'espaces métriques, comprenant les espaces d'Aleksandrov (à courbure minorée) et les espaces correspondants du type L2-Wasserstein. On considère aussi des applications aux flots gradients de l'entropie dans des espaces métriques mesurés à courbure de Ricci minorée et aux semigroupes de diffusion correspondants. Ces résultats ont été présentés au Congrés “Optimal Transport: theory and applications”, Pisa, Novembre 2006.

We present some new results concerning well-posedness of gradient flows generated by λ-convex functionals in a wide class of metric spaces, including Alexandrov spaces satisfying a lower curvature bound and the corresponding L2-Wasserstein spaces. Applications to the gradient flow of Entropy functionals in metric-measure spaces with Ricci curvature bounded from below and to the corresponding diffusion semigroup are also considered. These results have been announced during the workshop on “Optimal Transport: theory and applications” held in Pisa, November 2006.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.06.018

Giuseppe Savaré 1

1 Dipartimento di Matematica, Università di Pavia, Via Ferrata, 1, 27100 Pavia, Italy
@article{CRMATH_2007__345_3_151_0,
     author = {Giuseppe Savar\'e},
     title = {Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {151--154},
     publisher = {Elsevier},
     volume = {345},
     number = {3},
     year = {2007},
     doi = {10.1016/j.crma.2007.06.018},
     language = {en},
}
TY  - JOUR
AU  - Giuseppe Savaré
TI  - Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 151
EP  - 154
VL  - 345
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2007.06.018
LA  - en
ID  - CRMATH_2007__345_3_151_0
ER  - 
%0 Journal Article
%A Giuseppe Savaré
%T Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds
%J Comptes Rendus. Mathématique
%D 2007
%P 151-154
%V 345
%N 3
%I Elsevier
%R 10.1016/j.crma.2007.06.018
%G en
%F CRMATH_2007__345_3_151_0
Giuseppe Savaré. Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 151-154. doi : 10.1016/j.crma.2007.06.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.018/

[1] L. Ambrosio; N. Gigli; G. Savaré Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005

[2] L. Ambrosio; G. Savaré Gradient flows of probability measures, Handbook of Evolution Equations (III), Elsevier, 2006

[3] H. Brézis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5, North-Holland Publishing Co., Amsterdam, 1973

[4] D. Burago; Y. Burago; S. Ivanov A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001

[5] R. Jordan; D. Kinderlehrer; F. Otto The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., Volume 29 (1998), pp. 1-17

[6] J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., in press

[7] U.F. Mayer Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom., Volume 6 (1998), pp. 199-253

[8] S.-I. Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces, preprint, 2007

[9] G. Perelman, A. Petrunin, Quasigeodesics and gradient curves in Alexandrov spaces, unpublished manuscript

[10] K.-T. Sturm On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006), pp. 65-131

[11] C. Villani Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003

  • Fue Zhang; Wei Zhao Absolutely continuous curves in Finsler-like spaces, Differential Geometry and its Applications, Volume 96 (2024), p. 102154 | DOI:10.1016/j.difgeo.2024.102154
  • Mark A. Peletier; André Schlichting Cosh gradient systems and tilting, Nonlinear Analysis, Volume 231 (2023), p. 113094 | DOI:10.1016/j.na.2022.113094
  • Shin-ichi Ohta Curvature-Dimension Condition, Comparison Finsler Geometry (2021), p. 269 | DOI:10.1007/978-3-030-80650-7_18
  • Nina Lebedeva; Shin-ichi Ohta; Vladimir Zolotov Self-Contracted Curves in Spaces With Weak Lower Curvature Bound, International Mathematics Research Notices, Volume 2021 (2021) no. 11, p. 8623 | DOI:10.1093/imrn/rnz347
  • Matteo Muratori; Giuseppe Savaré Gradient flows and Evolution Variational Inequalities in metric spaces. I: Structural properties, Journal of Functional Analysis, Volume 278 (2020) no. 4, p. 108347 | DOI:10.1016/j.jfa.2019.108347
  • J.A. Carrillo; M.G. Delgadino; G.A. Pavliotis A λ-convexity based proof for the propagation of chaos for weakly interacting stochastic particles, Journal of Functional Analysis, Volume 279 (2020) no. 10, p. 108734 | DOI:10.1016/j.jfa.2020.108734
  • Shin-ichi Ohta Self-contracted Curves in CAT(0)-Spaces and Their Rectifiability, The Journal of Geometric Analysis, Volume 30 (2020) no. 1, p. 936 | DOI:10.1007/s12220-018-00126-7
  • Vaios Laschos; Alexander Mielke Geometric properties of cones with applications on the Hellinger–Kantorovich space, and a new distance on the space of probability measures, Journal of Functional Analysis, Volume 276 (2019) no. 11, p. 3529 | DOI:10.1016/j.jfa.2018.12.013
  • Kyungkeun Kang; Hwa Kil Kim Existence of Weak Solutions in Wasserstein Space for a Chemotaxis Model Coupled to Fluid Equations, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 4, p. 2965 | DOI:10.1137/16m1083232
  • Alexander Mielke Deriving amplitude equations via evolutionary Γ-convergence, Discrete Continuous Dynamical Systems - A, Volume 35 (2015) no. 6, p. 2679 | DOI:10.3934/dcds.2015.35.2679
  • Shin-ichi Ohta On the Curvature and Heat Flow on Hamiltonian Systems, Analysis and Geometry in Metric Spaces, Volume 2 (2014) no. 1 | DOI:10.2478/agms-2014-0003
  • Nicolas Juillet Diffusion by optimal transport in Heisenberg groups, Calculus of Variations and Partial Differential Equations, Volume 50 (2014) no. 3-4, p. 693 | DOI:10.1007/s00526-013-0652-2
  • Luigi Ambrosio; Nicola Gigli; Giuseppe Savaré Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Mathematical Journal, Volume 163 (2014) no. 7 | DOI:10.1215/00127094-2681605
  • Yu Kitabeppu Lower bound of coarse Ricci curvature on metric measure spaces and eigenvalues of Laplacian, Geometriae Dedicata, Volume 169 (2014) no. 1, p. 99 | DOI:10.1007/s10711-013-9844-3
  • Sara Danieri; Guiseppe Savaré Lecture notes on gradient flows and optimal transport, Optimal Transport (2014), p. 100 | DOI:10.1017/cbo9781107297296.007
  • Shin-Ichi Ohta Ricci curvature, entropy, and optimal transport, Optimal Transport (2014), p. 145 | DOI:10.1017/cbo9781107297296.008
  • Nicola Gigli; Kazumasa Kuwada; Shin‐ichi Ohta Heat Flow on Alexandrov Spaces, Communications on Pure and Applied Mathematics, Volume 66 (2013) no. 3, p. 307 | DOI:10.1002/cpa.21431
  • Hwa Kil Kim; Nader Masmoudi Generating and Adding Flows on Locally Complete Metric Spaces, Journal of Dynamics and Differential Equations, Volume 25 (2013) no. 1, p. 231 | DOI:10.1007/s10884-012-9280-3
  • Luigi Ambrosio; Nicola Gigli A User’s Guide to Optimal Transport, Modelling and Optimisation of Flows on Networks, Volume 2062 (2013), p. 1 | DOI:10.1007/978-3-642-32160-3_1
  • Pekka Koskela; Yuan Zhou Geometry and analysis of Dirichlet forms, Advances in Mathematics, Volume 231 (2012) no. 5, p. 2755 | DOI:10.1016/j.aim.2012.08.004
  • Shin-ichi Ohta; Karl-Theodor Sturm Non-Contraction of Heat Flow on Minkowski Spaces, Archive for Rational Mechanics and Analysis, Volume 204 (2012) no. 3, p. 917 | DOI:10.1007/s00205-012-0493-8
  • Steffen Arnrich; Alexander Mielke; Mark A. Peletier; Giuseppe Savaré; Marco Veneroni Passing to the limit in a Wasserstein gradient flow: from diffusion to reaction, Calculus of Variations and Partial Differential Equations, Volume 44 (2012) no. 3-4, p. 419 | DOI:10.1007/s00526-011-0440-9
  • Tapio Rajala Local Poincaré inequalities from stable curvature conditions on metric spaces, Calculus of Variations and Partial Differential Equations, Volume 44 (2012) no. 3-4, p. 477 | DOI:10.1007/s00526-011-0442-7
  • Nicola Gigli; Shin-Ichi Ohta First Variation Formula in Wasserstein Spaces over Compact Alexandrov Spaces, Canadian Mathematical Bulletin, Volume 55 (2012) no. 4, p. 723 | DOI:10.4153/cmb-2011-110-3
  • Renjin Jiang Gradient estimate for solutions to Poisson equations in metric measure spaces, Journal of Functional Analysis, Volume 261 (2011) no. 12, p. 3549 | DOI:10.1016/j.jfa.2011.08.011
  • Jan Maas Gradient flows of the entropy for finite Markov chains, Journal of Functional Analysis, Volume 261 (2011) no. 8, p. 2250 | DOI:10.1016/j.jfa.2011.06.009
  • Nathael Gozlan; Cyril Roberto; Paul-Marie Samson A new characterization of Talagrand’s transport-entropy inequalities and applications, The Annals of Probability, Volume 39 (2011) no. 3 | DOI:10.1214/10-aop570
  • Matthias Erbar The heat equation on manifolds as a gradient flow in the Wasserstein space, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 46 (2010) no. 1 | DOI:10.1214/08-aihp306
  • Vitali Kapovitch; Anton Petrunin; Wilderich Tuschmann Nilpotency, almost nonnegative curvature, and the gradient flow on Alexandrov spaces, Annals of Mathematics, Volume 171 (2010) no. 1, p. 343 | DOI:10.4007/annals.2010.171.343
  • Nicola Gigli On the heat flow on metric measure spaces: existence, uniqueness and stability, Calculus of Variations and Partial Differential Equations, Volume 39 (2010) no. 1-2, p. 101 | DOI:10.1007/s00526-009-0303-9
  • Kazumasa Kuwada Duality on gradient estimates and Wasserstein controls, Journal of Functional Analysis, Volume 258 (2010) no. 11, p. 3758 | DOI:10.1016/j.jfa.2010.01.010
  • J.A. Carrillo; S. Lisini; G. Savaré; D. Slepčev Nonlinear mobility continuity equations and generalized displacement convexity, Journal of Functional Analysis, Volume 258 (2010) no. 4, p. 1273 | DOI:10.1016/j.jfa.2009.10.016
  • Shin-ichi Ohta Finsler interpolation inequalities, Calculus of Variations and Partial Differential Equations, Volume 36 (2009) no. 2, p. 211 | DOI:10.1007/s00526-009-0227-4
  • Shin‐ichi Ohta; Karl‐Theodor Sturm Heat flow on Finsler manifolds, Communications on Pure and Applied Mathematics, Volume 62 (2009) no. 10, p. 1386 | DOI:10.1002/cpa.20273
  • Shin-ichi Ohta Uniform convexity and smoothness, and their applications in Finsler geometry, Mathematische Annalen, Volume 343 (2009) no. 3, p. 669 | DOI:10.1007/s00208-008-0286-4

Cité par 35 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: