[Flots gradients dans des espaces métriques à courbure minorée]
On présente dans cette Note quelques résultats nouveaux relatifs aux flots gradients associés aux fonctionnelles λ-convexes dans une large classe d'espaces métriques, comprenant les espaces d'Aleksandrov (à courbure minorée) et les espaces correspondants du type
We present some new results concerning well-posedness of gradient flows generated by λ-convex functionals in a wide class of metric spaces, including Alexandrov spaces satisfying a lower curvature bound and the corresponding
Accepté le :
Publié le :
Giuseppe Savaré 1
@article{CRMATH_2007__345_3_151_0, author = {Giuseppe Savar\'e}, title = {Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds}, journal = {Comptes Rendus. Math\'ematique}, pages = {151--154}, publisher = {Elsevier}, volume = {345}, number = {3}, year = {2007}, doi = {10.1016/j.crma.2007.06.018}, language = {en}, }
Giuseppe Savaré. Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 151-154. doi : 10.1016/j.crma.2007.06.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.018/
[1] Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005
[2] Gradient flows of probability measures, Handbook of Evolution Equations (III), Elsevier, 2006
[3] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5, North-Holland Publishing Co., Amsterdam, 1973
[4] A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001
[5] The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., Volume 29 (1998), pp. 1-17
[6] J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., in press
[7] Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom., Volume 6 (1998), pp. 199-253
[8] S.-I. Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces, preprint, 2007
[9] G. Perelman, A. Petrunin, Quasigeodesics and gradient curves in Alexandrov spaces, unpublished manuscript
[10] On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006), pp. 65-131
[11] Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003
- Absolutely continuous curves in Finsler-like spaces, Differential Geometry and its Applications, Volume 96 (2024), p. 102154 | DOI:10.1016/j.difgeo.2024.102154
- Cosh gradient systems and tilting, Nonlinear Analysis, Volume 231 (2023), p. 113094 | DOI:10.1016/j.na.2022.113094
- Curvature-Dimension Condition, Comparison Finsler Geometry (2021), p. 269 | DOI:10.1007/978-3-030-80650-7_18
- Self-Contracted Curves in Spaces With Weak Lower Curvature Bound, International Mathematics Research Notices, Volume 2021 (2021) no. 11, p. 8623 | DOI:10.1093/imrn/rnz347
- Gradient flows and Evolution Variational Inequalities in metric spaces. I: Structural properties, Journal of Functional Analysis, Volume 278 (2020) no. 4, p. 108347 | DOI:10.1016/j.jfa.2019.108347
- A λ-convexity based proof for the propagation of chaos for weakly interacting stochastic particles, Journal of Functional Analysis, Volume 279 (2020) no. 10, p. 108734 | DOI:10.1016/j.jfa.2020.108734
- Self-contracted Curves in
-Spaces and Their Rectifiability, The Journal of Geometric Analysis, Volume 30 (2020) no. 1, p. 936 | DOI:10.1007/s12220-018-00126-7 - Geometric properties of cones with applications on the Hellinger–Kantorovich space, and a new distance on the space of probability measures, Journal of Functional Analysis, Volume 276 (2019) no. 11, p. 3529 | DOI:10.1016/j.jfa.2018.12.013
- Existence of Weak Solutions in Wasserstein Space for a Chemotaxis Model Coupled to Fluid Equations, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 4, p. 2965 | DOI:10.1137/16m1083232
- Deriving amplitude equations via evolutionary
-convergence, Discrete Continuous Dynamical Systems - A, Volume 35 (2015) no. 6, p. 2679 | DOI:10.3934/dcds.2015.35.2679 - On the Curvature and Heat Flow on Hamiltonian Systems, Analysis and Geometry in Metric Spaces, Volume 2 (2014) no. 1 | DOI:10.2478/agms-2014-0003
- Diffusion by optimal transport in Heisenberg groups, Calculus of Variations and Partial Differential Equations, Volume 50 (2014) no. 3-4, p. 693 | DOI:10.1007/s00526-013-0652-2
- Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Mathematical Journal, Volume 163 (2014) no. 7 | DOI:10.1215/00127094-2681605
- Lower bound of coarse Ricci curvature on metric measure spaces and eigenvalues of Laplacian, Geometriae Dedicata, Volume 169 (2014) no. 1, p. 99 | DOI:10.1007/s10711-013-9844-3
- Lecture notes on gradient flows and optimal transport, Optimal Transport (2014), p. 100 | DOI:10.1017/cbo9781107297296.007
- Ricci curvature, entropy, and optimal transport, Optimal Transport (2014), p. 145 | DOI:10.1017/cbo9781107297296.008
- Heat Flow on Alexandrov Spaces, Communications on Pure and Applied Mathematics, Volume 66 (2013) no. 3, p. 307 | DOI:10.1002/cpa.21431
- Generating and Adding Flows on Locally Complete Metric Spaces, Journal of Dynamics and Differential Equations, Volume 25 (2013) no. 1, p. 231 | DOI:10.1007/s10884-012-9280-3
- A User’s Guide to Optimal Transport, Modelling and Optimisation of Flows on Networks, Volume 2062 (2013), p. 1 | DOI:10.1007/978-3-642-32160-3_1
- Geometry and analysis of Dirichlet forms, Advances in Mathematics, Volume 231 (2012) no. 5, p. 2755 | DOI:10.1016/j.aim.2012.08.004
- Non-Contraction of Heat Flow on Minkowski Spaces, Archive for Rational Mechanics and Analysis, Volume 204 (2012) no. 3, p. 917 | DOI:10.1007/s00205-012-0493-8
- Passing to the limit in a Wasserstein gradient flow: from diffusion to reaction, Calculus of Variations and Partial Differential Equations, Volume 44 (2012) no. 3-4, p. 419 | DOI:10.1007/s00526-011-0440-9
- Local Poincaré inequalities from stable curvature conditions on metric spaces, Calculus of Variations and Partial Differential Equations, Volume 44 (2012) no. 3-4, p. 477 | DOI:10.1007/s00526-011-0442-7
- First Variation Formula in Wasserstein Spaces over Compact Alexandrov Spaces, Canadian Mathematical Bulletin, Volume 55 (2012) no. 4, p. 723 | DOI:10.4153/cmb-2011-110-3
- Gradient estimate for solutions to Poisson equations in metric measure spaces, Journal of Functional Analysis, Volume 261 (2011) no. 12, p. 3549 | DOI:10.1016/j.jfa.2011.08.011
- Gradient flows of the entropy for finite Markov chains, Journal of Functional Analysis, Volume 261 (2011) no. 8, p. 2250 | DOI:10.1016/j.jfa.2011.06.009
- A new characterization of Talagrand’s transport-entropy inequalities and applications, The Annals of Probability, Volume 39 (2011) no. 3 | DOI:10.1214/10-aop570
- The heat equation on manifolds as a gradient flow in the Wasserstein space, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 46 (2010) no. 1 | DOI:10.1214/08-aihp306
- Nilpotency, almost nonnegative curvature, and the gradient flow on Alexandrov spaces, Annals of Mathematics, Volume 171 (2010) no. 1, p. 343 | DOI:10.4007/annals.2010.171.343
- On the heat flow on metric measure spaces: existence, uniqueness and stability, Calculus of Variations and Partial Differential Equations, Volume 39 (2010) no. 1-2, p. 101 | DOI:10.1007/s00526-009-0303-9
- Duality on gradient estimates and Wasserstein controls, Journal of Functional Analysis, Volume 258 (2010) no. 11, p. 3758 | DOI:10.1016/j.jfa.2010.01.010
- Nonlinear mobility continuity equations and generalized displacement convexity, Journal of Functional Analysis, Volume 258 (2010) no. 4, p. 1273 | DOI:10.1016/j.jfa.2009.10.016
- Finsler interpolation inequalities, Calculus of Variations and Partial Differential Equations, Volume 36 (2009) no. 2, p. 211 | DOI:10.1007/s00526-009-0227-4
- Heat flow on Finsler manifolds, Communications on Pure and Applied Mathematics, Volume 62 (2009) no. 10, p. 1386 | DOI:10.1002/cpa.20273
- Uniform convexity and smoothness, and their applications in Finsler geometry, Mathematische Annalen, Volume 343 (2009) no. 3, p. 669 | DOI:10.1007/s00208-008-0286-4
Cité par 35 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier