We present some new results concerning well-posedness of gradient flows generated by λ-convex functionals in a wide class of metric spaces, including Alexandrov spaces satisfying a lower curvature bound and the corresponding -Wasserstein spaces. Applications to the gradient flow of Entropy functionals in metric-measure spaces with Ricci curvature bounded from below and to the corresponding diffusion semigroup are also considered. These results have been announced during the workshop on “Optimal Transport: theory and applications” held in Pisa, November 2006.
On présente dans cette Note quelques résultats nouveaux relatifs aux flots gradients associés aux fonctionnelles λ-convexes dans une large classe d'espaces métriques, comprenant les espaces d'Aleksandrov (à courbure minorée) et les espaces correspondants du type -Wasserstein. On considère aussi des applications aux flots gradients de l'entropie dans des espaces métriques mesurés à courbure de Ricci minorée et aux semigroupes de diffusion correspondants. Ces résultats ont été présentés au Congrés “Optimal Transport: theory and applications”, Pisa, Novembre 2006.
Accepted:
Published online:
Giuseppe Savaré 1
@article{CRMATH_2007__345_3_151_0, author = {Giuseppe Savar\'e}, title = {Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds}, journal = {Comptes Rendus. Math\'ematique}, pages = {151--154}, publisher = {Elsevier}, volume = {345}, number = {3}, year = {2007}, doi = {10.1016/j.crma.2007.06.018}, language = {en}, }
Giuseppe Savaré. Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 151-154. doi : 10.1016/j.crma.2007.06.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.018/
[1] Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005
[2] Gradient flows of probability measures, Handbook of Evolution Equations (III), Elsevier, 2006
[3] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5, North-Holland Publishing Co., Amsterdam, 1973
[4] A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001
[5] The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., Volume 29 (1998), pp. 1-17
[6] J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., in press
[7] Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom., Volume 6 (1998), pp. 199-253
[8] S.-I. Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces, preprint, 2007
[9] G. Perelman, A. Petrunin, Quasigeodesics and gradient curves in Alexandrov spaces, unpublished manuscript
[10] On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006), pp. 65-131
[11] Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003
Cited by Sources:
Comments - Policy