In this Note we consider the Jacobi–Davidson method applied to a nonsymmetric generalized eigenproblem. We analyze the convergence behavior of the method when the linear systems involved, known as the correction equations, are solved approximately. Our analysis also exhibits quadratic convergence when the corrections are solved exactly.
Dans cette Note, la méthode de Jacobi–Davidson appliquée à un problème aux valeurs propres généralisé non symétrique est considérée. Nous analysons la convergence de la méthode quand les systèmes linéaires mis en jeu, plus connus sous le nom d'équations de correction, sont résolus approximativement. Notre analyse montre également la convergence quadratique de la méthode pour des solutions exactes de la correction.
Accepted:
Published online:
Grace Hechme 1
@article{CRMATH_2007__345_5_293_0, author = {Grace Hechme}, title = {Convergence analysis of the {Jacobi{\textendash}Davidson} method applied to a generalized eigenproblem}, journal = {Comptes Rendus. Math\'ematique}, pages = {293--296}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.003}, language = {en}, }
Grace Hechme. Convergence analysis of the Jacobi–Davidson method applied to a generalized eigenproblem. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 293-296. doi : 10.1016/j.crma.2007.07.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.003/
[1] G. Hechme, Theoretical and numerical spectral analysis of some linearized hydrodynamic models, Ph.D. thesis, Universit é de Bretagne Occidentale, Brest, December 2005 (in French); http://www.ensta.fr/~hechme/new/these.html
[2] Computational Methods for Fluid Flow, Springer Series in Computational Physics, Springer-Verlag, New York, 1983
[3] Numerical Methods for Large Eigenvalue Problems, Algorithms and Architectures for Advanced Scientific Computing, Manchester University Press, Manchester, UK, 1992
[4] Jacobi–Davidson type methods for generalized eigenproblems and polynomial eigenproblems, BIT, Volume 36 (1996) no. 3, pp. 595-633
Cited by Sources:
Comments - Policy