A new symplectic variational approach is developed for modeling dissipation in kinetic equations. This approach yields a double bracket structure in phase space which generates kinetic equations representing coadjoint motion under canonical transformations. The Vlasov example admits measure-valued single-particle solutions. Such solutions are reversible. The total entropy is a Casimir, and thus it is preserved.
Une nouvelle approche est proposée pour modeliser la dissipation dans les équations cinétiques. Cette approche produit une structure à double crochet dans l'espace des phases qui aboutit aux équations cinétiques d'une dynamique coadjointe après transformations canoniques. L'exemple de Vlasov admet alors des solutions pour une seule particule. Ces solutions sont réversibles ; l'entropie totale est un Casimir et elle est donc préservée.
Accepted:
Published online:
Darryl D. Holm 1, 2; Vakhtang Putkaradze 3, 4; Cesare Tronci 1, 5
@article{CRMATH_2007__345_5_297_0, author = {Darryl D. Holm and Vakhtang Putkaradze and Cesare Tronci}, title = {Geometric dissipation in kinetic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {297--302}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.001}, language = {en}, }
Darryl D. Holm; Vakhtang Putkaradze; Cesare Tronci. Geometric dissipation in kinetic equations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 297-302. doi : 10.1016/j.crma.2007.07.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.001/
[1] The Euler–Poincaré equations and double bracket dissipation, Comm. Math. Phys., Volume 175 (1996), pp. 1-42
[2] Liquid Crystals, Cambridge University Press, Cambridge, 1992
[3] The Physics of Liquid Crystals, Oxford University Press, Oxford, 1993
[4] Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann., Volume 43 (1914), pp. 810-820
[5] Collisionless Boltzmann equations and integrable moment equations, Physica D, Volume 3 (1981), pp. 503-511
[6] J. Gibbons, D.D. Holm, C. Tronci, Singular solutions for geodesic flows of Vlasov moments, in: Proceedings of the MSRI workshop “Probability, Geometry and Integrable Systems”, Celebration of Henry McKean's 75th birthday, Cambridge University Press, Cambridge, 2007, in press, also at | arXiv
[7] Vlasov moments, integrable systems and singular solutions (Phys. Lett. A, submitted for publication, also at) | arXiv
[8] A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev., Volume 100 (1955), pp. 1243-1255
[9] Aggregation of finite-size particles with variable mobility, Phys. Rev. Lett., Volume 95 (2005), pp. 106-226
[10] Formation of clumps and patches in self-aggregation of finite size particles, Physica D, Volume 220 (2006), pp. 183-196
[11] Formation and evolution of singularities in anisotropic geometric continua, Physica D (2007) | DOI
[12] D.D. Holm, V. Putkaradze, C. Tronci, Geometric evolution equations for order parameters, Physica D, submitted for publication
[13] The secular instability of axisymmetric collisionless star cluster, Astrophys. J., Volume 380 (1991), pp. 511-514
[14] Dissipative Hamiltonian systems: a unifying principle, Phys. Lett. A, Volume 100 (1984), pp. 419-422
[15] Long wave equations with a free surface. II. The Hamiltonian structure and the higher equations, Funktsional. Anal. i Prilozhen., Volume 12 (1978), pp. 25-37
[16] Bracket formulation for irreversible classical fields, Phys. Lett. A, Volume 100 (1984), pp. 423-427
[17] The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, Volume 26 (2001), pp. 101-174
[18] , J. Phys. (USSR) (Many-Particle Theory and its Application to Plasma), Volume 9, Gordon and Breach, New York, 1945, pp. 25-40
Cited by Sources:
Comments - Policy