Comptes Rendus
Mathematical Physics
Geometric dissipation in kinetic equations
Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 297-302.

A new symplectic variational approach is developed for modeling dissipation in kinetic equations. This approach yields a double bracket structure in phase space which generates kinetic equations representing coadjoint motion under canonical transformations. The Vlasov example admits measure-valued single-particle solutions. Such solutions are reversible. The total entropy is a Casimir, and thus it is preserved.

Une nouvelle approche est proposée pour modeliser la dissipation dans les équations cinétiques. Cette approche produit une structure à double crochet dans l'espace des phases qui aboutit aux équations cinétiques d'une dynamique coadjointe après transformations canoniques. L'exemple de Vlasov admet alors des solutions pour une seule particule. Ces solutions sont réversibles ; l'entropie totale est un Casimir et elle est donc préservée.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.07.001

Darryl D. Holm 1, 2; Vakhtang Putkaradze 3, 4; Cesare Tronci 1, 5

1 Department of Mathematics, Imperial College London, London SW7 2AZ, UK
2 Computer and Computational Science Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
3 Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA
4 Institute for Theoretical Physics, Universität Köln, Zuplicher Str. 77, 50968 Köln, Germany
5 TERA Foundation for Oncological Hadrontherapy, 11 V. Puccini, Novara 28100, Italy
@article{CRMATH_2007__345_5_297_0,
     author = {Darryl D. Holm and Vakhtang Putkaradze and Cesare Tronci},
     title = {Geometric dissipation in kinetic equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {297--302},
     publisher = {Elsevier},
     volume = {345},
     number = {5},
     year = {2007},
     doi = {10.1016/j.crma.2007.07.001},
     language = {en},
}
TY  - JOUR
AU  - Darryl D. Holm
AU  - Vakhtang Putkaradze
AU  - Cesare Tronci
TI  - Geometric dissipation in kinetic equations
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 297
EP  - 302
VL  - 345
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2007.07.001
LA  - en
ID  - CRMATH_2007__345_5_297_0
ER  - 
%0 Journal Article
%A Darryl D. Holm
%A Vakhtang Putkaradze
%A Cesare Tronci
%T Geometric dissipation in kinetic equations
%J Comptes Rendus. Mathématique
%D 2007
%P 297-302
%V 345
%N 5
%I Elsevier
%R 10.1016/j.crma.2007.07.001
%G en
%F CRMATH_2007__345_5_297_0
Darryl D. Holm; Vakhtang Putkaradze; Cesare Tronci. Geometric dissipation in kinetic equations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 297-302. doi : 10.1016/j.crma.2007.07.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.001/

[1] A. Bloch; P.S. Krishnaprasad; J.E. Marsden; T.S. Ratiu The Euler–Poincaré equations and double bracket dissipation, Comm. Math. Phys., Volume 175 (1996), pp. 1-42

[2] S. Chandrasekhar Liquid Crystals, Cambridge University Press, Cambridge, 1992

[3] P.G. de Gennes; J. Prost The Physics of Liquid Crystals, Oxford University Press, Oxford, 1993

[4] A.D. Fokker; A.N. Kolmogorov Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann., Volume 43 (1914), pp. 810-820

[5] J. Gibbons Collisionless Boltzmann equations and integrable moment equations, Physica D, Volume 3 (1981), pp. 503-511

[6] J. Gibbons, D.D. Holm, C. Tronci, Singular solutions for geodesic flows of Vlasov moments, in: Proceedings of the MSRI workshop “Probability, Geometry and Integrable Systems”, Celebration of Henry McKean's 75th birthday, Cambridge University Press, Cambridge, 2007, in press, also at | arXiv

[7] J. Gibbons; D.D. Holm; C. Tronci Vlasov moments, integrable systems and singular solutions (Phys. Lett. A, submitted for publication, also at) | arXiv

[8] T.L. Gilbert A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev., Volume 100 (1955), pp. 1243-1255

[9] D.D. Holm; V. Putkaradze Aggregation of finite-size particles with variable mobility, Phys. Rev. Lett., Volume 95 (2005), pp. 106-226

[10] D.D. Holm; V. Putkaradze Formation of clumps and patches in self-aggregation of finite size particles, Physica D, Volume 220 (2006), pp. 183-196

[11] D.D. Holm; V. Putkaradze Formation and evolution of singularities in anisotropic geometric continua, Physica D (2007) | DOI

[12] D.D. Holm, V. Putkaradze, C. Tronci, Geometric evolution equations for order parameters, Physica D, submitted for publication

[13] H.E. Kandrup The secular instability of axisymmetric collisionless star cluster, Astrophys. J., Volume 380 (1991), pp. 511-514

[14] A.N. Kaufman Dissipative Hamiltonian systems: a unifying principle, Phys. Lett. A, Volume 100 (1984), pp. 419-422

[15] B.A. Kupershmidt; Ju.I. Manin Long wave equations with a free surface. II. The Hamiltonian structure and the higher equations, Funktsional. Anal. i Prilozhen., Volume 12 (1978), pp. 25-37

[16] P.J. Morrison Bracket formulation for irreversible classical fields, Phys. Lett. A, Volume 100 (1984), pp. 423-427

[17] F. Otto The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, Volume 26 (2001), pp. 101-174

[18] A.A. Vlasov; A.A. Vlasov, J. Phys. (USSR) (Many-Particle Theory and its Application to Plasma), Volume 9, Gordon and Breach, New York, 1945, pp. 25-40

Cited by Sources:

Comments - Policy