Let us consider the xi-function and the Li coefficients defined by
In this Note, we generalise the Li criterion for a function F in the Selberg class. Then, we obtain an explicit formula for the Li coefficients associated to F.
Considérons la fonction zêta de Riemann complétée et les coefficients de Li associés définis par
Dans cette Note, on généralise le critère de Li à une fonction F de la classe de Selberg, et on obtient une formule explicite pour les coefficients de Li associés à F.
Accepted:
Published online:
Sami Omar 1; Kamel Mazhouda 2
@article{CRMATH_2007__345_5_245_0, author = {Sami Omar and Kamel Mazhouda}, title = {Le crit\`ere de positivit\'e de {Li} pour la classe de {Selberg}}, journal = {Comptes Rendus. Math\'ematique}, pages = {245--248}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.008}, language = {fr}, }
Sami Omar; Kamel Mazhouda. Le critère de positivité de Li pour la classe de Selberg. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 245-248. doi : 10.1016/j.crma.2007.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.008/
[1] Complements to Li's criterion for the Riemann hypothesis, J. Number Theory, Volume 77 (1999) no. 2, pp. 274-287
[2] On the Selberg class of Dirichlet series: small degrees, Duke Math. J., Volume 72 (1993) no. 3, pp. 673-693
[3] On the Laurent coefficients of certain Dirichlet series, Publ. Inst. Math. (Beograd), Volume 53 (1993) no. 67, pp. 23-36
[4] On the Selberg class: Survey, Acta Math., Volume 182 (1999), pp. 953-992
[5] Li coefficients for automorphic L-functions, Ann. Inst. Fourier, Volume 56 (2006), pp. 1-52
[6] The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory, Volume 65 (1997) no. 2, pp. 325-333
[7] Explicit formulas for Dirichlet and Hecke L-functions, Illinois J. Math., Volume 48 (2004) no. 2, pp. 491-503
[8] An explicit formula for Hecke L-functions (arXiv:) | arXiv
[9] Old and new conjectures and results about a class of Dirichlet series, Collected Papers, vol. II, Springer-Verlag, 1991, pp. 47-63
Cited by Sources:
Comments - Policy