Comptes Rendus
Partial Differential Equations
Concerning the Ladyzhenskaya–Smagorinsky turbulence model of the Navier–Stokes equations
Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 249-252.

In some recent papers (see below) we prove regularity results in Lq(Ω) spaces for the second order derivatives of the velocity and the first order derivatives of the pressure for solutions to Stokes and Navier–Stokes systems of equations with shear thickening viscosity. We take into account only regularity results that hold up to the boundary. In the above references we consider flat boundaries. More recently, we have extended the above results to the case of curvilinear boundaries. The aim of this note is to describe these last results, together with suitable comments.

Dans des articles récents (voir ci-après) nous avons démontré des résultats de régularité dans des espaces Lq pour les dérivées secondes de la vitesse et les dérivées premières de la presssion, pour des systèmes de Stokes et Navier–Stokes avec des viscosités qui dépendent de la partie symétrique du gradient des vitesses. Nous considérons seulement des résultats de régularité valables jusqu'au bord. Dans ces articles nous avons considéré des frontières plates. Tous récemment nous avons généraliser ces résultats aux cas des frontières arbitraires. Le but de cette note est de décrire ces résultats, avec des commentaires adéquats.

Accepted:
Published online:
DOI: 10.1016/j.crma.2007.07.015

Hugo Beirão da Veiga 1

1 Dipartimento di Matematica Applicata “U.Dini”, Via Buonarrotti, 1/C, 56127 Pisa, Italy
@article{CRMATH_2007__345_5_249_0,
     author = {Hugo Beir\~ao da Veiga},
     title = {Concerning the {Ladyzhenskaya{\textendash}Smagorinsky} turbulence model of the {Navier{\textendash}Stokes} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {249--252},
     publisher = {Elsevier},
     volume = {345},
     number = {5},
     year = {2007},
     doi = {10.1016/j.crma.2007.07.015},
     language = {en},
}
TY  - JOUR
AU  - Hugo Beirão da Veiga
TI  - Concerning the Ladyzhenskaya–Smagorinsky turbulence model of the Navier–Stokes equations
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 249
EP  - 252
VL  - 345
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2007.07.015
LA  - en
ID  - CRMATH_2007__345_5_249_0
ER  - 
%0 Journal Article
%A Hugo Beirão da Veiga
%T Concerning the Ladyzhenskaya–Smagorinsky turbulence model of the Navier–Stokes equations
%J Comptes Rendus. Mathématique
%D 2007
%P 249-252
%V 345
%N 5
%I Elsevier
%R 10.1016/j.crma.2007.07.015
%G en
%F CRMATH_2007__345_5_249_0
Hugo Beirão da Veiga. Concerning the Ladyzhenskaya–Smagorinsky turbulence model of the Navier–Stokes equations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 249-252. doi : 10.1016/j.crma.2007.07.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.015/

[1] H. Beirão da Veiga On the regularity of flows with Ladyzhenskaya shear dependent viscosity and slip and non-slip boundary conditions, Comm. Pure Appl. Math., Volume 58 (2005), pp. 552-577

[2] H. Beirão da Veiga, Navier–Stokes equations with shear thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., in press

[3] H. Beirão da Veiga, Navier–Stokes equations with shear thinning viscosity. Regularity up to the boundary, J. Math. Fluid Mech., in press

[4] H. Beirão da Veiga, On the Ladyzhenskaya–Smagorinsky turbulence model of the Navier–Stokes equations in smooth domains. The regularity problem, J. Eur. Math. Soc., submitted for publication

[5] H. Beirão da Veiga, On the global regularity of shear thinning flows in smooth domains, in press

[6] O.A. Ladyzhenskaya, Moscow, 1966 (Amer. Math. Soc. Transl. (2)), Volume vol. 70, Nauka, Moscow (1968), pp. 560-573 (English transl. in, 1968)

[7] O.A. Ladyzhenskaya Sur de nouvelles équations dans la dynamique des fluides visqueux et leurs résolution globale, Tr. Math. Inst. Steklova, Volume CII (1967), pp. 85-104

[8] O.A. Ladyzhenskaya Sur des modifications des équations de Navier–Stokes pour des grand gradients de vitesses, Séminaire Inst. Steklova, Volume 7 (1968), pp. 126-154

[9] O.A. Ladyzhenskaya The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969

[10] O.A. Ladyzhenskaya Some results on modifications of three-dimensional Navier–Stokes equations (G. Buttazzo; G.P. Galdi; E. Lanconelli; P. Pucci, eds.), Nonlinear Analysis and Continuum Mechanics, Springer-Verlag, New York, 1998, pp. 73-84

[11] J.L. Lions Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969

[12] J. Málek; J. Nečas; M. Růžička On the non-Newtonian incompressible fluids, Math. Models Methods Appl. Sci, Volume 3 (1993), pp. 35-63

[13] J. Málek; J. Nečas; M. Růžička On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p2, Adv. Differential Equations, Volume 6 (2001), pp. 257-302

[14] J. Serrin Mathematical Principles of Classical Fluid Mechanics, Encyclopedia of Physics, vol. VIII, Springer-Verlag, Berlin, 1959 (pp. 125–263)

[15] J.S. Smagorinsky General circulation experiments with the primitive equations. I. The basic experiment, Mon. Weather Rev., Volume 91 (1963), pp. 99-164

[16] G. Stokes Trans. Cambridge Phil. Soc., 8 287 (1845), pp. 75-129

Cited by Sources:

Comments - Policy