[Sur le modèle de turbulence de Ladyzhenskaya–Smagorinsky des équations de Navier–Stokes]
Dans des articles récents (voir ci-après) nous avons démontré des résultats de régularité dans des espaces
In some recent papers (see below) we prove regularity results in
Publié le :
Hugo Beirão da Veiga 1
@article{CRMATH_2007__345_5_249_0, author = {Hugo Beir\~ao da Veiga}, title = {Concerning the {Ladyzhenskaya{\textendash}Smagorinsky} turbulence model of the {Navier{\textendash}Stokes} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {249--252}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.015}, language = {en}, }
Hugo Beirão da Veiga. Concerning the Ladyzhenskaya–Smagorinsky turbulence model of the Navier–Stokes equations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 249-252. doi : 10.1016/j.crma.2007.07.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.015/
[1] On the regularity of flows with Ladyzhenskaya shear dependent viscosity and slip and non-slip boundary conditions, Comm. Pure Appl. Math., Volume 58 (2005), pp. 552-577
[2] H. Beirão da Veiga, Navier–Stokes equations with shear thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., in press
[3] H. Beirão da Veiga, Navier–Stokes equations with shear thinning viscosity. Regularity up to the boundary, J. Math. Fluid Mech., in press
[4] H. Beirão da Veiga, On the Ladyzhenskaya–Smagorinsky turbulence model of the Navier–Stokes equations in smooth domains. The regularity problem, J. Eur. Math. Soc., submitted for publication
[5] H. Beirão da Veiga, On the global regularity of shear thinning flows in smooth domains, in press
[6] , Moscow, 1966 (Amer. Math. Soc. Transl. (2)), Volume vol. 70, Nauka, Moscow (1968), pp. 560-573 (English transl. in, 1968)
[7] Sur de nouvelles équations dans la dynamique des fluides visqueux et leurs résolution globale, Tr. Math. Inst. Steklova, Volume CII (1967), pp. 85-104
[8] Sur des modifications des équations de Navier–Stokes pour des grand gradients de vitesses, Séminaire Inst. Steklova, Volume 7 (1968), pp. 126-154
[9] The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969
[10] Some results on modifications of three-dimensional Navier–Stokes equations (G. Buttazzo; G.P. Galdi; E. Lanconelli; P. Pucci, eds.), Nonlinear Analysis and Continuum Mechanics, Springer-Verlag, New York, 1998, pp. 73-84
[11] Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969
[12] On the non-Newtonian incompressible fluids, Math. Models Methods Appl. Sci, Volume 3 (1993), pp. 35-63
[13] On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case
[14] Mathematical Principles of Classical Fluid Mechanics, Encyclopedia of Physics, vol. VIII, Springer-Verlag, Berlin, 1959 (pp. 125–263)
[15] General circulation experiments with the primitive equations. I. The basic experiment, Mon. Weather Rev., Volume 91 (1963), pp. 99-164
[16] Trans. Cambridge Phil. Soc., 8 287 (1845), pp. 75-129
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier