Let k be a field of characteristic zero, and let G be a split simple algebraic group of type over k. We prove that the functor of G-torsors satisfies purity for regular local rings containing k.
Soit k un corps de caractéristique 0, et soit G un k-groupe simple déployé de type . Nous montrons que le foncteur des G-torseurs satisfait au « théorème de pureté » pour la catégorie des anneaux locaux réguliers contenant k.
Accepted:
Published online:
Vladimir Chernousov 1; Ivan Panin 2, 3
@article{CRMATH_2007__345_6_307_0, author = {Vladimir Chernousov and Ivan Panin}, title = {Purity of $ {G}_{2}$-torsors}, journal = {Comptes Rendus. Math\'ematique}, pages = {307--312}, publisher = {Elsevier}, volume = {345}, number = {6}, year = {2007}, doi = {10.1016/j.crma.2007.07.018}, language = {en}, }
Vladimir Chernousov; Ivan Panin. Purity of $ {G}_{2}$-torsors. Comptes Rendus. Mathématique, Volume 345 (2007) no. 6, pp. 307-312. doi : 10.1016/j.crma.2007.07.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.018/
[1] Espaces principaux homogènes localement triviaux, Publ. Math. IHES, Volume 75 (1992) no. 2, pp. 97-122
[2] Fibrés quadratiques et composantes connexes réelles, Math. Annalen, Volume 244 (1979), pp. 105-134
[3] Quadratic and Hermitian Forms over Rings, Grundlehren der Math. Wissenschaften, vol. 294, Springer, 1991
[4] Commutative Algebra, W.A. Benjamin Co., New York, 1970
[5] Quadratic forms over regular rings, J. Indian Math. Soc., Volume 44 (1980), pp. 109-116
[6] A purity theorem for the Witt group, Ann. Sci. Ecole Norm. Sup. (4), Volume 32 (1999) no. 1, pp. 71-86
[7] Rationally trivial Hermitian spaces are locally trivial, Math. Z., Volume 237 (2001), pp. 181-198
[8] Rationally isotropic quadratic spaces are locally isotropic http://www.math.uiuc.edu/K-theory/0671/2003
[9] Octonions, Jordan Algebras and Exceptional Groups, Springer-Verlag, 2000
Cited by Sources:
Comments - Policy