The objective of this Note is to present optimality results in orbital transfer. Averaging of the energy minimization problem is considered, and properties of the associated Riemannian metric are discussed.
Cette Note présente des résultats d'optimalité en transfert orbital. La moyennation du problème de la minimisation de l'énergie est considérée, et les propriétés de la métrique riemannienne associée sont présentées.
Accepted:
Published online:
Bernard Bonnard 1; Jean-Baptiste Caillau 2
@article{CRMATH_2007__345_6_319_0, author = {Bernard Bonnard and Jean-Baptiste Caillau}, title = {Optimality results in orbit transfer}, journal = {Comptes Rendus. Math\'ematique}, pages = {319--324}, publisher = {Elsevier}, volume = {345}, number = {6}, year = {2007}, doi = {10.1016/j.crma.2007.07.028}, language = {en}, }
Bernard Bonnard; Jean-Baptiste Caillau. Optimality results in orbit transfer. Comptes Rendus. Mathématique, Volume 345 (2007) no. 6, pp. 319-324. doi : 10.1016/j.crma.2007.07.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.028/
[1] Integrable Geodesic Flows on Two-Dimensional Surfaces, Kluwer, New York, 2000
[2] Decomposition of cut loci, Proc. Amer. Math. Soc., Volume 65 (1977) no. 1, pp. 133-136
[3] Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 24 (2007) no. 3, pp. 395-411
[4] B. Bonnard, J.-B. Caillau, Geodesic flow of the averaged controlled Kepler equation, HAL preprint number 00134702 (hal.archives-ouvertes.fr/hal-00134702), 2007
[5] Energy minimization of single-input orbit transfer by averaging and continuation, Bull. Sci. Math., Volume 130 (2006) no. 8, pp. 707-719
[6] B. Bonnard, J.-B. Caillau, E. Trélat, Second order optimality conditions in optimal control with applications, in: Proceedings of the 6th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Poitiers, June 2006, Discrete Contin. Dyn. Syst. Suppl., in press
[7] Leçons sur la théorie générale des surfaces, tome III, Gauthiers-Villars, 1914
[8] Riemannian Geometry, Birkhäuser, 1992
[9] An improved Topogonov comparison theorem for non-negatively curved manifolds, J. Differential Geom., Volume 15 (1980), pp. 187-216
[10] Optimal low-thrust transfers with constraints: generalization of averaging techniques, Acta Astronaut., Volume 41 (1997) no. 3, pp. 133-149
[11] Riemannian Geometry, Springer, 1990
[12] Homotopy method for minimum consumption orbit transfer problem, ESAIM Control Optim. Calc. Var., Volume 12 (2006), pp. 294-310
[13] Scattering of geodesic field II, Ann. of Math., Volume 108 (1978), pp. 347-372
[14] Riemannian Geometry, de Gruyter, 1982
[15] Über die jenigen Punkte auf positiv gekrümmten Flächen, welche die Eigenschaft haben, daß die von ihnen ausgehenden geodätischen Linien nie aufhören, kürzeste Linien zu sein, J. Reine Angew. Math., Volume 91 (1881), pp. 23-53
[16] Connections between geometry and topology II, Duke Math. J., Volume 1 (1935), pp. 376-391
[17] Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc., Volume 5 (1905), pp. 237-274
[18] R. Sinclair, M. Tanaka, The cut locus of a 2-sphere of revolution and Toponogov's comparison theorem, Preprint, 2006
[19] Trajectoires Spatiales, CNES–Cepadues, Toulouse, 1987
Cited by Sources:
Comments - Policy