Comptes Rendus
Optimal Control
Optimality results in orbit transfer
Comptes Rendus. Mathématique, Volume 345 (2007) no. 6, pp. 319-324.

The objective of this Note is to present optimality results in orbital transfer. Averaging of the energy minimization problem is considered, and properties of the associated Riemannian metric are discussed.

Cette Note présente des résultats d'optimalité en transfert orbital. La moyennation du problème de la minimisation de l'énergie est considérée, et les propriétés de la métrique riemannienne associée sont présentées.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.07.028

Bernard Bonnard 1; Jean-Baptiste Caillau 2

1 Institut de mathématiques de Bourgogne (UMR CNRS 5584), 9, avenue Savary, 21078 Dijon, France
2 ENSEEIHT-IRIT (UMR CNRS 5505), 2, rue Camichel, 31071 Toulouse, France
@article{CRMATH_2007__345_6_319_0,
     author = {Bernard Bonnard and Jean-Baptiste Caillau},
     title = {Optimality results in orbit transfer},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {319--324},
     publisher = {Elsevier},
     volume = {345},
     number = {6},
     year = {2007},
     doi = {10.1016/j.crma.2007.07.028},
     language = {en},
}
TY  - JOUR
AU  - Bernard Bonnard
AU  - Jean-Baptiste Caillau
TI  - Optimality results in orbit transfer
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 319
EP  - 324
VL  - 345
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2007.07.028
LA  - en
ID  - CRMATH_2007__345_6_319_0
ER  - 
%0 Journal Article
%A Bernard Bonnard
%A Jean-Baptiste Caillau
%T Optimality results in orbit transfer
%J Comptes Rendus. Mathématique
%D 2007
%P 319-324
%V 345
%N 6
%I Elsevier
%R 10.1016/j.crma.2007.07.028
%G en
%F CRMATH_2007__345_6_319_0
Bernard Bonnard; Jean-Baptiste Caillau. Optimality results in orbit transfer. Comptes Rendus. Mathématique, Volume 345 (2007) no. 6, pp. 319-324. doi : 10.1016/j.crma.2007.07.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.028/

[1] A. Bolsinov; A. Fomenko Integrable Geodesic Flows on Two-Dimensional Surfaces, Kluwer, New York, 2000

[2] R.L. Bishop Decomposition of cut loci, Proc. Amer. Math. Soc., Volume 65 (1977) no. 1, pp. 133-136

[3] B. Bonnard; J.-B. Caillau Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 24 (2007) no. 3, pp. 395-411

[4] B. Bonnard, J.-B. Caillau, Geodesic flow of the averaged controlled Kepler equation, HAL preprint number 00134702 (hal.archives-ouvertes.fr/hal-00134702), 2007

[5] B. Bonnard; J.-B. Caillau; R. Dujol Energy minimization of single-input orbit transfer by averaging and continuation, Bull. Sci. Math., Volume 130 (2006) no. 8, pp. 707-719

[6] B. Bonnard, J.-B. Caillau, E. Trélat, Second order optimality conditions in optimal control with applications, in: Proceedings of the 6th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Poitiers, June 2006, Discrete Contin. Dyn. Syst. Suppl., in press

[7] G. Darboux Leçons sur la théorie générale des surfaces, tome III, Gauthiers-Villars, 1914

[8] M.P. Do Carmo Riemannian Geometry, Birkhäuser, 1992

[9] D. Elerath An improved Topogonov comparison theorem for non-negatively curved manifolds, J. Differential Geom., Volume 15 (1980), pp. 187-216

[10] R. Epenoy; S. Geffroy Optimal low-thrust transfers with constraints: generalization of averaging techniques, Acta Astronaut., Volume 41 (1997) no. 3, pp. 133-149

[11] S. Gallot; D. Hulin; J. Lafontaine Riemannian Geometry, Springer, 1990

[12] J. Gergaud; Th. Haberkorn Homotopy method for minimum consumption orbit transfer problem, ESAIM Control Optim. Calc. Var., Volume 12 (2006), pp. 294-310

[13] H. Gluck; D. Singer; H. Gluck; D. Singer Scattering of geodesic field II, Ann. of Math., Volume 108 (1978), pp. 347-372

[14] W. Klingenberg Riemannian Geometry, de Gruyter, 1982

[15] H. von Mangoldt Über die jenigen Punkte auf positiv gekrümmten Flächen, welche die Eigenschaft haben, daß die von ihnen ausgehenden geodätischen Linien nie aufhören, kürzeste Linien zu sein, J. Reine Angew. Math., Volume 91 (1881), pp. 23-53

[16] S.B. Myers; S.B. Myers Connections between geometry and topology II, Duke Math. J., Volume 1 (1935), pp. 376-391

[17] H. Poincaré Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc., Volume 5 (1905), pp. 237-274

[18] R. Sinclair, M. Tanaka, The cut locus of a 2-sphere of revolution and Toponogov's comparison theorem, Preprint, 2006

[19] O. Zarrouati Trajectoires Spatiales, CNES–Cepadues, Toulouse, 1987

Cited by Sources:

Comments - Policy