Let X be an irreducible smooth complex projective curve and a finite subset. Fix a positive integer N. We consider all the parabolic vector bundles over X whose parabolic points are contained in S and all the parabolic weights are integral multiples on . We construct a parabolic vector bundle , of this type, satisfying the following condition: a parabolic vector bundle of this type is parabolic semistable if and only if there is a parabolic vector bundle , also of this type, such that the underlying vector bundle for the parabolic tensor product is cohomologically trivial, which means that for all i. Given any parabolic semistable vector bundle , the existence of such is proved using a criterion of Faltings which says that a vector bundle E over X is semistable if and only if there is another vector bundle F such that is cohomologically trivial.
Soit X une courbe complexe lisse projective irréductible et une partie finie. Fixons un entier positif N. Nous considerons les fibrés vectoriels paraboliques sur X dont les points paraboliques sont contenus dans S et les poids paraboliques sont des multiples entiers de . Nous construisons un tel fibré vectoriel parabolique , vérifiant la condition suivante : un fibré vectoriel parabolique du type comme ci-dessus est semistable au sens parabolique si et seulement s'il existe un fibré vectoriel parabolique , aussi de tel type, tel que le fibré vectoriel sous-jacent au produit tensoriel parabolique soit cohomologiquement trivial : on a pour . L'existence d'un tel est démontrée en utilisant un critère de Faltings qui dit qu'un fibré vectoriel E sur X est semistable si et seulement s'il existe un fibré vectoriel F tel que pour .
Accepted:
Published online:
Indranil Biswas 1
@article{CRMATH_2007__345_6_325_0, author = {Indranil Biswas}, title = {A cohomological criterion for semistable parabolic vector bundles on a curve}, journal = {Comptes Rendus. Math\'ematique}, pages = {325--328}, publisher = {Elsevier}, volume = {345}, number = {6}, year = {2007}, doi = {10.1016/j.crma.2007.07.004}, language = {en}, }
Indranil Biswas. A cohomological criterion for semistable parabolic vector bundles on a curve. Comptes Rendus. Mathématique, Volume 345 (2007) no. 6, pp. 325-328. doi : 10.1016/j.crma.2007.07.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.004/
[1] Principal bundles over projective manifolds with parabolic structure over a divisor, Tohoku Math. J., Volume 53 (2001), pp. 337-367
[2] Parabolic bundles as orbifold bundles, Duke Math. J., Volume 88 (1997), pp. 305-325
[3] Parabolic ample bundles, Math. Ann., Volume 307 (1997), pp. 511-529
[4] Stable G-bundles and projective connections, J. Algebraic Geom., Volume 2 (1993), pp. 507-568
[5] Moduli of vector bundles on curves with parabolic structures, Math. Ann., Volume 248 (1980), pp. 205-239
[6] Branched Coverings and Algebraic Functions, Pitman Research Notes in Mathematics, vol. 161, Longman Scientific & Technical House, 1987
[7] Infinitesimal deformations of parabolic Higgs sheaves, Int. J. Math., Volume 6 (1995), pp. 125-148
Cited by Sources:
Comments - Policy