This Note deals with the diffusion approximation of dynamical systems where the velocity function contains a perturbing term. Thus, the problem considered is the investigation of the fluctuation of the initial system with respect to the above perturbing term.
Cette Note concerne l'approximation de diffusion des systèmes dynamiques où la fonction de vitesse contient un terme de perturbation. Ainsi le problème considéré est l'étude de la fluctuation du système initial par rapport au terme de perturbation.
Accepted:
Published online:
Yaroslav Chabaniuk 1; Vladimir S. Koroliuk 2; Nikolaos Limnios 3
@article{CRMATH_2007__345_7_405_0, author = {Yaroslav Chabaniuk and Vladimir S. Koroliuk and Nikolaos Limnios}, title = {Fluctuation of stochastic systems with average equilibrium point}, journal = {Comptes Rendus. Math\'ematique}, pages = {405--410}, publisher = {Elsevier}, volume = {345}, number = {7}, year = {2007}, doi = {10.1016/j.crma.2007.07.029}, language = {en}, }
TY - JOUR AU - Yaroslav Chabaniuk AU - Vladimir S. Koroliuk AU - Nikolaos Limnios TI - Fluctuation of stochastic systems with average equilibrium point JO - Comptes Rendus. Mathématique PY - 2007 SP - 405 EP - 410 VL - 345 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2007.07.029 LA - en ID - CRMATH_2007__345_7_405_0 ER -
Yaroslav Chabaniuk; Vladimir S. Koroliuk; Nikolaos Limnios. Fluctuation of stochastic systems with average equilibrium point. Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 405-410. doi : 10.1016/j.crma.2007.07.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.029/
[1] Stochastic Systems in Merging Phase Space, World Scientific, 2005
[2] Stochastic Approximation and Optimization of Random Systems, Birkhäuser Verlag, Basel, 1992
[3] Stochastic Approximation and Recurrent Estimation, Nauka, Moscow, 1972
[4] Random Perturbation Method with Application in Science and Engineering, Springer, 2002
Cited by Sources:
Comments - Policy