[Une inégalité de stabilité pour les problèmes de Cauchy elliptiques mal posés dans un domaine comportant des coins]
Nous montrons dans cette Note une inégalité de stabilité pour les problèmes de Cauchy elliptiques mal posés dans un domaine comportant des coins. Ce résultat complète un résultat antérieur obtenu pour un domaine régulier.
We prove in this Note a stability estimate for ill-posed elliptic Cauchy problems in a domain with corners. This result completes an earlier result obtained for a smooth domain.
Accepté le :
Publié le :
Laurent Bourgeois 1
@article{CRMATH_2007__345_7_385_0, author = {Laurent Bourgeois}, title = {A stability estimate for ill-posed elliptic {Cauchy} problems in a domain with corners}, journal = {Comptes Rendus. Math\'ematique}, pages = {385--390}, publisher = {Elsevier}, volume = {345}, number = {7}, year = {2007}, doi = {10.1016/j.crma.2007.09.014}, language = {en}, }
Laurent Bourgeois. A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners. Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 385-390. doi : 10.1016/j.crma.2007.09.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.014/
[1] L. Bourgeois, Conditional stability for ill-posed elliptic Cauchy problems in non-smooth domains, in preparation
[2] Prolongement unique des solutions de l'équation de Stokes, Communication in Partial Differential Equations, Volume 21 (1996), pp. 573-596
[3] Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Research Institute of Math., Seoul National University, 1996
[4] Elliptic Problems in Nonsmooth Domains, Pitman, 1985
[5] Linear Partial Differential Operators, fourth printing, Springer-Verlag, 1976
[6] Contrôle exact de l'équation de la chaleur, Communication in Partial Differential Equations, Volume 20 (1995), pp. 335-356
[7] Les Méthodes Directes en Théorie Des équations elliptiques, Masson, 1967
[8] Remarques sur l'observabilité pour l'équation de Laplace, ESAIM: Control, Optimisation and Calculus of Variations, Volume 9 (2003), pp. 621-635
- Controllability results for the two-dimensional heat equation with mixed boundary conditions using Carleman inequalities: a linear and a semilinear case, Applicable Analysis, Volume 97 (2018) no. 14, pp. 2412-2430 | DOI:10.1080/00036811.2017.1371298 | Zbl:1401.35199
- The Cauchy problem of coupled elliptic sine-Gordon equations with noise: analysis of a general kernel-based regularization and reliable tools of computing, Computers Mathematics with Applications, Volume 73 (2017) no. 1, pp. 141-162 | DOI:10.1016/j.camwa.2016.11.001 | Zbl:1368.65217
- A modified integral equation method of the nonlinear elliptic equation with globally and locally Lipschitz source, Applied Mathematics and Computation, Volume 265 (2015), pp. 245-265 | DOI:10.1016/j.amc.2015.03.115 | Zbl:1410.35282
- On an inverse boundary value problem of a nonlinear elliptic equation in three dimensions, Journal of Mathematical Analysis and Applications, Volume 426 (2015) no. 2, pp. 1232-1261 | DOI:10.1016/j.jmaa.2014.12.047 | Zbl:1317.35296
- Null controllability of three-dimensional heat equation in singular domains, Acta Applicandae Mathematicae, Volume 134 (2014) no. 1, pp. 87-109 | DOI:10.1007/s10440-014-9871-6 | Zbl:1330.93031
- Recovering the source and initial value simultaneously in a parabolic equation, Inverse Problems, Volume 30 (2014) no. 6, p. 065013 | DOI:10.1088/0266-5611/30/6/065013
- A Carleman estimate for the two dimensional heat equation with mixed boundary conditions, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 351 (2013) no. 3-4, pp. 97-100 | DOI:10.1016/j.crma.2013.02.006 | Zbl:1307.35130
- Carleman inequalities for the two-dimensional heat equation in singular domains, Mathematical Control Related Fields, Volume 2 (2012) no. 4, p. 331 | DOI:10.3934/mcrf.2012.2.331
Cité par 8 documents. Sources : Crossref, zbMATH
Commentaires - Politique