Comptes Rendus
Partial Differential Equations
A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners
[Une inégalité de stabilité pour les problèmes de Cauchy elliptiques mal posés dans un domaine comportant des coins]
Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 385-390.

Nous montrons dans cette Note une inégalité de stabilité pour les problèmes de Cauchy elliptiques mal posés dans un domaine comportant des coins. Ce résultat complète un résultat antérieur obtenu pour un domaine régulier.

We prove in this Note a stability estimate for ill-posed elliptic Cauchy problems in a domain with corners. This result completes an earlier result obtained for a smooth domain.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.09.014

Laurent Bourgeois 1

1 Laboratoire POEMS, ENSTA, 32, boulevard Victor, 75739 Paris cedex 15, France
@article{CRMATH_2007__345_7_385_0,
     author = {Laurent Bourgeois},
     title = {A stability estimate for ill-posed elliptic {Cauchy} problems in a domain with corners},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {385--390},
     publisher = {Elsevier},
     volume = {345},
     number = {7},
     year = {2007},
     doi = {10.1016/j.crma.2007.09.014},
     language = {en},
}
TY  - JOUR
AU  - Laurent Bourgeois
TI  - A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 385
EP  - 390
VL  - 345
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2007.09.014
LA  - en
ID  - CRMATH_2007__345_7_385_0
ER  - 
%0 Journal Article
%A Laurent Bourgeois
%T A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners
%J Comptes Rendus. Mathématique
%D 2007
%P 385-390
%V 345
%N 7
%I Elsevier
%R 10.1016/j.crma.2007.09.014
%G en
%F CRMATH_2007__345_7_385_0
Laurent Bourgeois. A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners. Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 385-390. doi : 10.1016/j.crma.2007.09.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.014/

[1] L. Bourgeois, Conditional stability for ill-posed elliptic Cauchy problems in non-smooth domains, in preparation

[2] C. Fabre; G. Lebeau Prolongement unique des solutions de l'équation de Stokes, Communication in Partial Differential Equations, Volume 21 (1996), pp. 573-596

[3] A. Fursikov; O. Imanuvilov Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Research Institute of Math., Seoul National University, 1996

[4] P. Grisvard Elliptic Problems in Nonsmooth Domains, Pitman, 1985

[5] L. Hormander Linear Partial Differential Operators, fourth printing, Springer-Verlag, 1976

[6] G. Lebeau; L. Robbiano Contrôle exact de l'équation de la chaleur, Communication in Partial Differential Equations, Volume 20 (1995), pp. 335-356

[7] J. Necas Les Méthodes Directes en Théorie Des équations elliptiques, Masson, 1967

[8] K.-D. Phung Remarques sur l'observabilité pour l'équation de Laplace, ESAIM: Control, Optimisation and Calculus of Variations, Volume 9 (2003), pp. 621-635

  • Tarik Ali Ziane; Hadjer Ouzzane; Ouahiba Zair Controllability results for the two-dimensional heat equation with mixed boundary conditions using Carleman inequalities: a linear and a semilinear case, Applicable Analysis, Volume 97 (2018) no. 14, pp. 2412-2430 | DOI:10.1080/00036811.2017.1371298 | Zbl:1401.35199
  • Vo Anh Khoa; Mai Thanh Nhat Truong; Nguyen Ho Minh Duy; Nguyen Huy Tuan The Cauchy problem of coupled elliptic sine-Gordon equations with noise: analysis of a general kernel-based regularization and reliable tools of computing, Computers Mathematics with Applications, Volume 73 (2017) no. 1, pp. 141-162 | DOI:10.1016/j.camwa.2016.11.001 | Zbl:1368.65217
  • Nguyen Huy Tuan; Le Duc Thang; Vo Anh Khoa A modified integral equation method of the nonlinear elliptic equation with globally and locally Lipschitz source, Applied Mathematics and Computation, Volume 265 (2015), pp. 245-265 | DOI:10.1016/j.amc.2015.03.115 | Zbl:1410.35282
  • Nguyen Huy Tuan; Le Duc Thang; Vo Anh Khoa; Thanh Tran On an inverse boundary value problem of a nonlinear elliptic equation in three dimensions, Journal of Mathematical Analysis and Applications, Volume 426 (2015) no. 2, pp. 1232-1261 | DOI:10.1016/j.jmaa.2014.12.047 | Zbl:1317.35296
  • A. H. Belghazi Null controllability of three-dimensional heat equation in singular domains, Acta Applicandae Mathematicae, Volume 134 (2014) no. 1, pp. 87-109 | DOI:10.1007/s10440-014-9871-6 | Zbl:1330.93031
  • Guang-Hui Zheng; Ting Wei Recovering the source and initial value simultaneously in a parabolic equation, Inverse Problems, Volume 30 (2014) no. 6, p. 065013 | DOI:10.1088/0266-5611/30/6/065013
  • Tarik Ali Ziane; Hadjer Ouzzane; Ouahiba Zair A Carleman estimate for the two dimensional heat equation with mixed boundary conditions, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 351 (2013) no. 3-4, pp. 97-100 | DOI:10.1016/j.crma.2013.02.006 | Zbl:1307.35130
  • Abdelhakim Belghazi; Ferroudja Smadhi; Nawel Zaidi; Ouahiba Zair Carleman inequalities for the two-dimensional heat equation in singular domains, Mathematical Control Related Fields, Volume 2 (2012) no. 4, p. 331 | DOI:10.3934/mcrf.2012.2.331

Cité par 8 documents. Sources : Crossref, zbMATH

Commentaires - Politique