Comptes Rendus
Partial Differential Equations
A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners
Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 385-390.

We prove in this Note a stability estimate for ill-posed elliptic Cauchy problems in a domain with corners. This result completes an earlier result obtained for a smooth domain.

Nous montrons dans cette Note une inégalité de stabilité pour les problèmes de Cauchy elliptiques mal posés dans un domaine comportant des coins. Ce résultat complète un résultat antérieur obtenu pour un domaine régulier.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.09.014

Laurent Bourgeois 1

1 Laboratoire POEMS, ENSTA, 32, boulevard Victor, 75739 Paris cedex 15, France
@article{CRMATH_2007__345_7_385_0,
     author = {Laurent Bourgeois},
     title = {A stability estimate for ill-posed elliptic {Cauchy} problems in a domain with corners},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {385--390},
     publisher = {Elsevier},
     volume = {345},
     number = {7},
     year = {2007},
     doi = {10.1016/j.crma.2007.09.014},
     language = {en},
}
TY  - JOUR
AU  - Laurent Bourgeois
TI  - A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 385
EP  - 390
VL  - 345
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2007.09.014
LA  - en
ID  - CRMATH_2007__345_7_385_0
ER  - 
%0 Journal Article
%A Laurent Bourgeois
%T A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners
%J Comptes Rendus. Mathématique
%D 2007
%P 385-390
%V 345
%N 7
%I Elsevier
%R 10.1016/j.crma.2007.09.014
%G en
%F CRMATH_2007__345_7_385_0
Laurent Bourgeois. A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners. Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 385-390. doi : 10.1016/j.crma.2007.09.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.014/

[1] L. Bourgeois, Conditional stability for ill-posed elliptic Cauchy problems in non-smooth domains, in preparation

[2] C. Fabre; G. Lebeau Prolongement unique des solutions de l'équation de Stokes, Communication in Partial Differential Equations, Volume 21 (1996), pp. 573-596

[3] A. Fursikov; O. Imanuvilov Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Research Institute of Math., Seoul National University, 1996

[4] P. Grisvard Elliptic Problems in Nonsmooth Domains, Pitman, 1985

[5] L. Hormander Linear Partial Differential Operators, fourth printing, Springer-Verlag, 1976

[6] G. Lebeau; L. Robbiano Contrôle exact de l'équation de la chaleur, Communication in Partial Differential Equations, Volume 20 (1995), pp. 335-356

[7] J. Necas Les Méthodes Directes en Théorie Des équations elliptiques, Masson, 1967

[8] K.-D. Phung Remarques sur l'observabilité pour l'équation de Laplace, ESAIM: Control, Optimisation and Calculus of Variations, Volume 9 (2003), pp. 621-635

Cited by Sources:

Comments - Policy