This Note is devoted to studying the incompressible Euler equations. First, we prove global existence for three-dimensional axisymmetric solutions without swirl under a regularity assumption which is very close to the one which has been introduced in the two-dimensional setting by V. Yudovich (1963). Second, we state uniqueness in the general N-dimensional case for bounded solutions with bounded vorticity.
On s'intéresse aux équations d'Euler incompressibles. On établit d'abord l'existence globale pour des données axisymétriques sans swirl en dimension trois, vérifiant des hypothèses très proches de celles de V. Yudovich (1963) en dimension deux. On démontre ensuite un résultat général d'unicité en dimension N dans la classe des solutions bornées à tourbillon borné.
Accepted:
Published online:
Raphaël Danchin 1
@article{CRMATH_2007__345_7_391_0, author = {Rapha\"el Danchin}, title = {On perfect fluids with bounded vorticity}, journal = {Comptes Rendus. Math\'ematique}, pages = {391--394}, publisher = {Elsevier}, volume = {345}, number = {7}, year = {2007}, doi = {10.1016/j.crma.2007.09.002}, language = {en}, }
Raphaël Danchin. On perfect fluids with bounded vorticity. Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 391-394. doi : 10.1016/j.crma.2007.09.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.002/
[1] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., Volume 14 (1981) no. 2, pp. 209-246
[2] Fluides parfaits incompressibles, Astérisque, Volume 230 (1995)
[3] Évolution d'une singularité de type cusp dans une poche de tourbillon, Rev. Mat. Iberoamericana, Volume 16 (2000) no. 2, pp. 281-329
[4] Remarks on axisymmetric solutions of the incompressible Euler system, Comm. Partial Differential Equations, Volume 19 (1994), pp. 321-334
[5] Note on global existence for axially symmetric solutions of the Euler system, Proc. Japan Acad. Ser. A Math. Sci., Volume 70 (1994) no. 10, pp. 299-304
[6] Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., Volume 32 (1968), pp. 52-61
[7] Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. École Norm. Sup., Volume 32 (1999) no. 6, pp. 769-812
[8] Nonstationary flows of an ideal incompressible fluid, Z̆. Vyčisl. Mat. i Mat. Fiz., Volume 3 (1963), pp. 1032-1066
Cited by Sources:
Comments - Policy