Comptes Rendus
Partial Differential Equations
On perfect fluids with bounded vorticity
Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 391-394.

This Note is devoted to studying the incompressible Euler equations. First, we prove global existence for three-dimensional axisymmetric solutions without swirl under a regularity assumption which is very close to the one which has been introduced in the two-dimensional setting by V. Yudovich (1963). Second, we state uniqueness in the general N-dimensional case for bounded solutions with bounded vorticity.

On s'intéresse aux équations d'Euler incompressibles. On établit d'abord l'existence globale pour des données axisymétriques sans swirl en dimension trois, vérifiant des hypothèses très proches de celles de V. Yudovich (1963) en dimension deux. On démontre ensuite un résultat général d'unicité en dimension N dans la classe des solutions bornées à tourbillon borné.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.09.002

Raphaël Danchin 1

1 UMR 8050, Université Paris 12, 61, avenue du Général de Gaulle, 94010 Créteil cedex, France
@article{CRMATH_2007__345_7_391_0,
     author = {Rapha\"el Danchin},
     title = {On perfect fluids with bounded vorticity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {391--394},
     publisher = {Elsevier},
     volume = {345},
     number = {7},
     year = {2007},
     doi = {10.1016/j.crma.2007.09.002},
     language = {en},
}
TY  - JOUR
AU  - Raphaël Danchin
TI  - On perfect fluids with bounded vorticity
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 391
EP  - 394
VL  - 345
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2007.09.002
LA  - en
ID  - CRMATH_2007__345_7_391_0
ER  - 
%0 Journal Article
%A Raphaël Danchin
%T On perfect fluids with bounded vorticity
%J Comptes Rendus. Mathématique
%D 2007
%P 391-394
%V 345
%N 7
%I Elsevier
%R 10.1016/j.crma.2007.09.002
%G en
%F CRMATH_2007__345_7_391_0
Raphaël Danchin. On perfect fluids with bounded vorticity. Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 391-394. doi : 10.1016/j.crma.2007.09.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.002/

[1] J.-M. Bony Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., Volume 14 (1981) no. 2, pp. 209-246

[2] J.-Y. Chemin Fluides parfaits incompressibles, Astérisque, Volume 230 (1995)

[3] R. Danchin Évolution d'une singularité de type cusp dans une poche de tourbillon, Rev. Mat. Iberoamericana, Volume 16 (2000) no. 2, pp. 281-329

[4] X. Saint-Raymond Remarks on axisymmetric solutions of the incompressible Euler system, Comm. Partial Differential Equations, Volume 19 (1994), pp. 321-334

[5] T. Shirota; T. Yanagisawa Note on global existence for axially symmetric solutions of the Euler system, Proc. Japan Acad. Ser. A Math. Sci., Volume 70 (1994) no. 10, pp. 299-304

[6] M.R. Ukhovskii`; V.I. Yudovich Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., Volume 32 (1968), pp. 52-61

[7] M. Vishik Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. École Norm. Sup., Volume 32 (1999) no. 6, pp. 769-812

[8] V.I. Yudovich Nonstationary flows of an ideal incompressible fluid, Z̆. Vyčisl. Mat. i Mat. Fiz., Volume 3 (1963), pp. 1032-1066

Cited by Sources:

Comments - Policy