[Les limites d'explosion compactes en temps fini de singularités du flot de Ricci sont des solitons « rapetissés »]
Using the λ and μ functional introduced by Perelman, we prove that the compact blow-up limit of a Ricci flow which generates singularities at finite time must be a shrinking Ricci soliton.
Utilisant les fonctionnelles λ et μ introduites par Perelman, nous démontrons que les limites d'explosion compactes, en temps fini, du flot de Ricci engendrent des singularities de type solitons « rapetissés ».
Accepté le :
Publié le :
Zhei-lei Zhang 1
@article{CRMATH_2007__345_9_503_0, author = {Zhei-lei Zhang}, title = {Compact blow-up limits of finite time singularities of {Ricci} flow are shrinking {Ricci} solitons}, journal = {Comptes Rendus. Math\'ematique}, pages = {503--506}, publisher = {Elsevier}, volume = {345}, number = {9}, year = {2007}, doi = {10.1016/j.crma.2007.09.017}, language = {en}, }
Zhei-lei Zhang. Compact blow-up limits of finite time singularities of Ricci flow are shrinking Ricci solitons. Comptes Rendus. Mathématique, Volume 345 (2007) no. 9, pp. 503-506. doi : 10.1016/j.crma.2007.09.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.017/
[1] Three manifolds with positive Ricci curvature, J. Differential Geom., Volume 17 (1982), pp. 255-306
[2] A compactness property for solutions of the Ricci flow, Amer. J. Math., Volume 117 (1995), pp. 545-572
[3] Ricci solitons on compact three-manifolds, Differential Geom. Appl., Volume 3 (1993), pp. 301-307
[4] Notes on Perelman's paper | arXiv
[5] The entropy formula for the Ricci flow and its geometric applications | arXiv
[6] Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Funct. Anal., Volume 42 (1981), pp. 110-120
- On Ricci flows with closed and smooth tangent flows, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 7 | DOI:10.1007/s00526-024-02778-6
- Relative volume comparison of Ricci flow, Science China Mathematics, Volume 64 (2021) no. 9, p. 1937 | DOI:10.1007/s11425-021-1869-5
- Volume bounds of the Ricci flow on closed manifolds, Mathematische Zeitschrift, Volume 291 (2019) no. 3-4, p. 1133 | DOI:10.1007/s00209-019-02242-8
- Ancient solutions of the Ricci flow on bundles, Advances in Mathematics, Volume 318 (2017), p. 411 | DOI:10.1016/j.aim.2017.08.011
- Convergence of Kähler–Ricci Flow on Lower-Dimensional Algebraic Manifolds of General Type, International Mathematics Research Notices, Volume 2016 (2016) no. 21, p. 6493 | DOI:10.1093/imrn/rnv357
- On the Ricci curvature of steady gradient Ricci solitons, Journal of Mathematical Analysis and Applications, Volume 363 (2010) no. 2, p. 497 | DOI:10.1016/j.jmaa.2009.09.046
Cité par 6 documents. Sources : Crossref
Commentaires - Politique