Comptes Rendus
Differential Geometry
Positively curved π2-finite manifolds
Comptes Rendus. Mathématique, Volume 345 (2007) no. 9, pp. 499-502.

Let M be a smooth manifold with finite second homotopy group, positive sectional curvature, dimension greater than 8, and assume that a compact connected Lie group G acts smoothly on M. We prove the vanishing of the characteristic number Aˆ(M,TM) if G contains two commuting involutions.

Soit M une variété lisse avec un deuxième groupe d'homotopie fini, de courbure sectionnelle positive et de dimension plus grande que 8. Soit G un groupe de Lie compact et connexe qui agit de façon C sur M. On démontre que le nombre caractéristique Aˆ(M,TM) s'annule si G contient deux involutions qui commutent entre elles.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.10.021

Haydeé Herrera 1

1 Department of Mathematical Sciences, Rutgers University, Camden, NJ 08102, USA
@article{CRMATH_2007__345_9_499_0,
     author = {Hayde\'e Herrera},
     title = {Positively curved $ {\pi }_{2}$-finite manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {499--502},
     publisher = {Elsevier},
     volume = {345},
     number = {9},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.021},
     language = {en},
}
TY  - JOUR
AU  - Haydeé Herrera
TI  - Positively curved $ {\pi }_{2}$-finite manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 499
EP  - 502
VL  - 345
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2007.10.021
LA  - en
ID  - CRMATH_2007__345_9_499_0
ER  - 
%0 Journal Article
%A Haydeé Herrera
%T Positively curved $ {\pi }_{2}$-finite manifolds
%J Comptes Rendus. Mathématique
%D 2007
%P 499-502
%V 345
%N 9
%I Elsevier
%R 10.1016/j.crma.2007.10.021
%G en
%F CRMATH_2007__345_9_499_0
Haydeé Herrera. Positively curved $ {\pi }_{2}$-finite manifolds. Comptes Rendus. Mathématique, Volume 345 (2007) no. 9, pp. 499-502. doi : 10.1016/j.crma.2007.10.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.021/

[1] R. Bott; T. Taubes On the rigidity theorems of Witten, J. Amer. Math. Soc., Volume 2 (1989) no. 1, pp. 137-186

[2] A. Dessai Characteristic numbers of positively curved Spin-manifolds with symmetry, Proc. Amer. Math. Soc., Volume 133 (2005) no. 12, pp. 3657-3661

[3] T. Frankel Manifolds with positive curvature, Pacific J. Math., Volume 11 (1961), pp. 165-174

[4] H. Herrera; R. Herrera Aˆ-genus on non-spin manifolds with S1 actions and the classification of positive quaternion-Kähler 12-manifolds, J. Differential Geom., Volume 61 (2002) no. 3, pp. 341-364

[5] H. Herrera; R. Herrera The signature and the elliptic genus of π2-finite manifolds with circle actions, Topology Appl., Volume 136 (2004) no. 1–3, pp. 251-259

[6] F. Hirzebruch; T. Berger; R. Jung Manifolds and Modular Forms, Aspects of Mathematics, Vieweg, 1992

[7] A. Petrunin; W. Tuschmann Diffeomorphism finiteness, positive pinching, and second homotopy, Geom. Funct. Anal., Volume 9 (1999) no. 4, pp. 736-774

[8] B. Wilking Torus actions on manifolds of positive sectional curvature, Acta Math., Volume 191 (2003) no. 2, pp. 259-297

[9] E. Witten Elliptic genera and quantum field theory, Comm. Math. Phys., Volume 109 (1987), p. 525

Cited by Sources:

Comments - Policy