Let M be a smooth manifold with finite second homotopy group, positive sectional curvature, dimension greater than 8, and assume that a compact connected Lie group G acts smoothly on M. We prove the vanishing of the characteristic number if G contains two commuting involutions.
Soit M une variété lisse avec un deuxième groupe d'homotopie fini, de courbure sectionnelle positive et de dimension plus grande que 8. Soit G un groupe de Lie compact et connexe qui agit de façon sur M. On démontre que le nombre caractéristique s'annule si G contient deux involutions qui commutent entre elles.
Accepted:
Published online:
Haydeé Herrera 1
@article{CRMATH_2007__345_9_499_0, author = {Hayde\'e Herrera}, title = {Positively curved $ {\pi }_{2}$-finite manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {499--502}, publisher = {Elsevier}, volume = {345}, number = {9}, year = {2007}, doi = {10.1016/j.crma.2007.10.021}, language = {en}, }
Haydeé Herrera. Positively curved $ {\pi }_{2}$-finite manifolds. Comptes Rendus. Mathématique, Volume 345 (2007) no. 9, pp. 499-502. doi : 10.1016/j.crma.2007.10.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.021/
[1] On the rigidity theorems of Witten, J. Amer. Math. Soc., Volume 2 (1989) no. 1, pp. 137-186
[2] Characteristic numbers of positively curved Spin-manifolds with symmetry, Proc. Amer. Math. Soc., Volume 133 (2005) no. 12, pp. 3657-3661
[3] Manifolds with positive curvature, Pacific J. Math., Volume 11 (1961), pp. 165-174
[4] -genus on non-spin manifolds with actions and the classification of positive quaternion-Kähler 12-manifolds, J. Differential Geom., Volume 61 (2002) no. 3, pp. 341-364
[5] The signature and the elliptic genus of -finite manifolds with circle actions, Topology Appl., Volume 136 (2004) no. 1–3, pp. 251-259
[6] Manifolds and Modular Forms, Aspects of Mathematics, Vieweg, 1992
[7] Diffeomorphism finiteness, positive pinching, and second homotopy, Geom. Funct. Anal., Volume 9 (1999) no. 4, pp. 736-774
[8] Torus actions on manifolds of positive sectional curvature, Acta Math., Volume 191 (2003) no. 2, pp. 259-297
[9] Elliptic genera and quantum field theory, Comm. Math. Phys., Volume 109 (1987), p. 525
Cited by Sources:
Comments - Policy