[La théorie de De Giorgi pour les opérateurs non locaux]
Under quite general assumptions on
(1) |
(2) |
Sous des conditions générales pour
Accepté le :
Publié le :
Moritz Kassmann 1
@article{CRMATH_2007__345_11_621_0, author = {Moritz Kassmann}, title = {The theory of {De} {Giorgi} for non-local operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {621--624}, publisher = {Elsevier}, volume = {345}, number = {11}, year = {2007}, doi = {10.1016/j.crma.2007.10.007}, language = {en}, }
Moritz Kassmann. The theory of De Giorgi for non-local operators. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 621-624. doi : 10.1016/j.crma.2007.10.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.007/
[1] Hölder continuity of harmonic functions with respect to operators of variable orders, Comm. Partial Differential Equations, Volume 30 (2005), pp. 1249-1259
[2] Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), Volume 3 (1957), pp. 25-43
[3] On an
[4] M. Kassmann, Analysis of symmetric jump processes. A localization technique for non-local operators, Habilitation thesis, Universität Bonn, 2007
[5] Uniform estimates for fundamental solutions associated with non-local Dirichlet forms, Osaka J. Math., Volume 32 (1995) no. 4, pp. 833-860
[6] An estimate for the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR, Volume 245 (1979) no. 1, pp. 18-20
[7] Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968 (Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis)
[8] On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., Volume 14 (1961), pp. 577-591
[9] Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J., Volume 55 (2006) no. 3, pp. 1155-1174
- Local regularity of very weak
-harmonic functions via fractional difference quotients, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, Volume 35 (2024) no. 3, pp. 365-395 | DOI:10.4171/rlm/1045 | Zbl:8047096 - Local behavior of the mixed local and nonlocal problems with nonstandard growth, Journal of the London Mathematical Society. Second Series, Volume 109 (2024) no. 6, p. 34 (Id/No e12947) | DOI:10.1112/jlms.12947 | Zbl:1542.35011
- Local Hölder regularity for nonlocal equations with variable powers, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 1, p. 31 (Id/No 32) | DOI:10.1007/s00526-022-02353-x | Zbl:1507.35330
- Local Hölder continuity for fractional nonlocal equations with general growth, Mathematische Annalen, Volume 387 (2023) no. 1-2, pp. 807-846 | DOI:10.1007/s00208-022-02472-y | Zbl:1522.35543
- On a class of nonlocal obstacle type problems related to the distributional Riesz fractional derivative, Portugaliae Mathematica, Volume 80 (2023) no. 1-2, pp. 157-205 | DOI:10.4171/pm/2100 | Zbl:1514.35468
- Hölder regularity for weak solutions to nonlocal double phase problems, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 168 (2022), pp. 110-142 | DOI:10.1016/j.matpur.2022.11.001 | Zbl:1504.35104
- Calderón-Zygmund theory for non-convolution type nonlocal equations with continuous coefficient, SN Partial Differential Equations and Applications, Volume 3 (2022) no. 2, p. 27 (Id/No 24) | DOI:10.1007/s42985-022-00161-8 | Zbl:1487.35133
- Local boundedness and Hölder continuity for the parabolic fractional
-Laplace equations, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 1, p. 45 (Id/No 38) | DOI:10.1007/s00526-020-01870-x | Zbl:1459.35053 - Regularity estimates for nonlocal Schrödinger equations, Discrete and Continuous Dynamical Systems, Volume 39 (2019) no. 3, pp. 1405-1456 | DOI:10.3934/dcds.2019061 | Zbl:1407.35209
- On a new class of fractional partial differential equations. II, Advances in Calculus of Variations, Volume 11 (2018) no. 3, pp. 289-307 | DOI:10.1515/acv-2016-0056 | Zbl:1451.35257
- Interior regularity of solutions of non-local equations in Sobolev and Nikol'skii spaces, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 196 (2017) no. 2, pp. 555-578 | DOI:10.1007/s10231-016-0586-3 | Zbl:1371.35312
- Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes, Journal of Functional Analysis, Volume 272 (2017) no. 11, pp. 4762-4837 | DOI:10.1016/j.jfa.2017.02.016 | Zbl:1366.49040
- A De Giorgi-Nash type theorem for time fractional diffusion equations, Mathematische Annalen, Volume 356 (2013) no. 1, pp. 99-146 | DOI:10.1007/s00208-012-0834-9 | Zbl:1264.35271
- Uniqueness for integro-PDE in Hilbert spaces, Potential Analysis, Volume 38 (2013) no. 1, pp. 233-259 | DOI:10.1007/s11118-011-9271-8 | Zbl:1257.49026
- Lipschitz regularity of solutions for mixed integro-differential equations, Journal of Differential Equations, Volume 252 (2012) no. 11, pp. 6012-6060 | DOI:10.1016/j.jde.2012.02.013 | Zbl:1298.35033
- Heat kernel estimates and Harnack inequalities for some Dirichlet forms with non-local part, Electronic Journal of Probability, Volume 14 (2009) no. none | DOI:10.1214/ejp.v14-604
Cité par 16 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier