Under quite general assumptions on , we study integro-differential operators of the form
(1) |
(2) |
Sous des conditions générales pour , nous étudions les opérateurs intégro-différentiels de type (1). Nos conditions pour k impliquent qu'il existe un tel que reste borné pour de petits . Soit un ouvert borné. Soit . Une fonction est nommée -harmonique en Ω si pour tout . Le but de cette Note est de trouver des bornes locales pour des fonctions -harmoniques. Les principaux resultats démontrent que des fonctions qui sont -harmoniques dans la boule B satisfont des estimations a priori dans pour un et pour tout . Les résultats de ce travail peuvent être regardés comme une généralisation de la théorie dite De Giorgi–Nash–Moser aux opérateurs integro-differentiels d'ordre .
Accepted:
Published online:
Moritz Kassmann 1
@article{CRMATH_2007__345_11_621_0, author = {Moritz Kassmann}, title = {The theory of {De} {Giorgi} for non-local operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {621--624}, publisher = {Elsevier}, volume = {345}, number = {11}, year = {2007}, doi = {10.1016/j.crma.2007.10.007}, language = {en}, }
Moritz Kassmann. The theory of De Giorgi for non-local operators. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 621-624. doi : 10.1016/j.crma.2007.10.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.007/
[1] Hölder continuity of harmonic functions with respect to operators of variable orders, Comm. Partial Differential Equations, Volume 30 (2005), pp. 1249-1259
[2] Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), Volume 3 (1957), pp. 25-43
[3] On an -estimate of resolvents of Markov processes, Publ. Res. Inst. Math. Sci., Volume 13 (1977/1978) no. 1, pp. 277-284
[4] M. Kassmann, Analysis of symmetric jump processes. A localization technique for non-local operators, Habilitation thesis, Universität Bonn, 2007
[5] Uniform estimates for fundamental solutions associated with non-local Dirichlet forms, Osaka J. Math., Volume 32 (1995) no. 4, pp. 833-860
[6] An estimate for the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR, Volume 245 (1979) no. 1, pp. 18-20
[7] Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968 (Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis)
[8] On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., Volume 14 (1961), pp. 577-591
[9] Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J., Volume 55 (2006) no. 3, pp. 1155-1174
Cited by Sources:
Comments - Policy