Comptes Rendus
Partial Differential Equations
The theory of De Giorgi for non-local operators
[La théorie de De Giorgi pour les opérateurs non locaux]
Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 621-624.

Sous des conditions générales pour k:Rd×Rd[0,), nous étudions les opérateurs intégro-différentiels L de type (1). Nos conditions pour k impliquent qu'il existe un α(0,2) tel que k(x,y)|xy|d+α reste borné pour de petits |xy|. Soit ΩRd un ouvert borné. Soit DΩ(E)=L(Rd)Hlocα/2(Ω). Une fonction uDΩ(E) est nommée L-harmonique en Ω si pour tout ϕC0(Ω) E(u,ϕ)=0. Le but de cette Note est de trouver des bornes locales pour des fonctions L-harmoniques. Les principaux resultats démontrent que des fonctions uDB(E) qui sont L-harmoniques dans la boule B satisfont des estimations a priori dans Cβ(B¯) pour un β>0 et pour tout BB. Les résultats de ce travail peuvent être regardés comme une généralisation de la théorie dite De Giorgi–Nash–Moser aux opérateurs integro-differentiels d'ordre α(0,2).

Under quite general assumptions on k:Rd×Rd[0,), we study integro-differential operators L of the form

(Lu)(x)=2limε0yRd|yx|>ε(u(y)u(x))k(x,y)dy.(1)
Our assumptions on k imply that there is α(0,2) such that k(x,y)|xy|d+α stays bounded for small |xy|. Let ΩRd be a bounded open set. Set DΩ(E)=L(Rd)Hlocα/2(Ω). We call a function uDΩ(E) L-harmonic in Ω if for any ϕC0(Ω)
E(u,ϕ)=Rd×Rd(u(y)u(x))(ϕ(y)ϕ(x))k(x,y)dxdy=0.(2)
The aim of this Note is to prove local bounds for L-harmonic functions. The main results says that functions uDB(E) which are L-harmonic in the ball B satisfy a priori estimates in Cβ(B¯) for some β>0 and any BB. The results can be seen as a generalization of the so-called De Giorgi–Nash–Moser theory to integro-differential operators of order α(0,2).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.10.007
Moritz Kassmann 1

1 Institut für Angewandte Mathematik, Beringstraße 6, D-53115 Bonn, Germany
@article{CRMATH_2007__345_11_621_0,
     author = {Moritz Kassmann},
     title = {The theory of {De} {Giorgi} for non-local operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {621--624},
     publisher = {Elsevier},
     volume = {345},
     number = {11},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.007},
     language = {en},
}
TY  - JOUR
AU  - Moritz Kassmann
TI  - The theory of De Giorgi for non-local operators
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 621
EP  - 624
VL  - 345
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2007.10.007
LA  - en
ID  - CRMATH_2007__345_11_621_0
ER  - 
%0 Journal Article
%A Moritz Kassmann
%T The theory of De Giorgi for non-local operators
%J Comptes Rendus. Mathématique
%D 2007
%P 621-624
%V 345
%N 11
%I Elsevier
%R 10.1016/j.crma.2007.10.007
%G en
%F CRMATH_2007__345_11_621_0
Moritz Kassmann. The theory of De Giorgi for non-local operators. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 621-624. doi : 10.1016/j.crma.2007.10.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.007/

[1] R.F. Bass; M. Kassmann Hölder continuity of harmonic functions with respect to operators of variable orders, Comm. Partial Differential Equations, Volume 30 (2005), pp. 1249-1259

[2] E. De Giorgi Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), Volume 3 (1957), pp. 25-43

[3] M. Fukushima On an Lp-estimate of resolvents of Markov processes, Publ. Res. Inst. Math. Sci., Volume 13 (1977/1978) no. 1, pp. 277-284

[4] M. Kassmann, Analysis of symmetric jump processes. A localization technique for non-local operators, Habilitation thesis, Universität Bonn, 2007

[5] T. Komatsu Uniform estimates for fundamental solutions associated with non-local Dirichlet forms, Osaka J. Math., Volume 32 (1995) no. 4, pp. 833-860

[6] N.V. Krylov; M.V. Safonov An estimate for the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR, Volume 245 (1979) no. 1, pp. 18-20

[7] O.A. Ladyzhenskaya; N.N. Ural'tseva Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968 (Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis)

[8] J. Moser On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., Volume 14 (1961), pp. 577-591

[9] L. Silvestre Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J., Volume 55 (2006) no. 3, pp. 1155-1174

Cité par Sources :

Commentaires - Politique