In a former work, we have shown the existence of smooth shock profiles for a model of nonequilibrium radiative hydrodynamics. In this Note, we show that such shock profiles are asymptotically stable for zero mass perturbation. Following the case of viscous shock profiles, the analysis relies on energy estimates for the integrated system.
Dans un précédent travail, nous avons montré l'existence de profils de choc pour un modèle de transfert radiatif hors-équilibre. Dans cette Note, nous montrons que de tels profils de choc sont asymptotiquement stables pour des perturbations de masse nulle. Comme dans le cas des profils de choc visqueux, l'analyse repose sur des estimations d'énergie pour le système intégré.
Accepted:
Published online:
Chunjin Lin 1; Jean-François Coulombel 1; Thierry Goudon 1
@article{CRMATH_2007__345_11_625_0, author = {Chunjin Lin and Jean-Fran\c{c}ois Coulombel and Thierry Goudon}, title = {Asymptotic stability of shock profiles in radiative hydrodynamics}, journal = {Comptes Rendus. Math\'ematique}, pages = {625--628}, publisher = {Elsevier}, volume = {345}, number = {11}, year = {2007}, doi = {10.1016/j.crma.2007.10.029}, language = {en}, }
TY - JOUR AU - Chunjin Lin AU - Jean-François Coulombel AU - Thierry Goudon TI - Asymptotic stability of shock profiles in radiative hydrodynamics JO - Comptes Rendus. Mathématique PY - 2007 SP - 625 EP - 628 VL - 345 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2007.10.029 LA - en ID - CRMATH_2007__345_11_625_0 ER -
Chunjin Lin; Jean-François Coulombel; Thierry Goudon. Asymptotic stability of shock profiles in radiative hydrodynamics. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 625-628. doi : 10.1016/j.crma.2007.10.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.029/
[1] Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rational Mech. Anal., Volume 95 (1986) no. 4, pp. 325-344
[2] Predictions of the structure of radiation-resisted shock waves, Phys. Fluids, Volume 6 (1963), pp. 781-791
[3] Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Commun. Math. Phys., Volume 101 (1985) no. 1, pp. 97-127
[4] The initial value problem for hyperbolic-elliptic coupled systems and applications to radiation hydrodynamics, Aachen, 1997 (Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math.) (1999)
[5] Shock waves for a model system of the radiating gas, SIAM J. Math. Anal., Volume 30 (1999) no. 1, pp. 95-117
[6] Shock waves for radiative hyperbolic-elliptic systems, Indiana Univ. Math. J. (2007)
[7] C. Lin, Mathematical analysis of radiative transfer models, PhD Thesis, 2007
[8] Shock profiles for non-equilibrium radiating gases, Physica D, Volume 218 (2006) no. 1, pp. 83-94
[9] Foundations of Radiation Hydrodynamics, Oxford University Press, 1984
[10] Systems of Conservation Laws. 1, Cambridge University Press, 1999
[11] Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover Publications, 2002
Cited by Sources:
Comments - Policy