Comptes Rendus
Algebraic Geometry
An analog of a theorem of Lange and Stuhler for principal bundles
Comptes Rendus. Mathématique, Volume 345 (2007) no. 9, pp. 495-497.

Let k be an algebraically closed field of characteristic p>0 and G the base change to k of a connected reduced linear algebraic group defined over Z/pZ. Let EG be a principal G-bundle over a projective variety X defined over the field k. Assume that there is an étale Galois covering f:YX with degree(f) coprime to p such that the pulled back principal G-bundle fEG is trivializable. Then there is a positive integer n such that the pullback (FXn)EG is isomorphic to EG, where FX is the absolute Frobenius morphism of X.

This can be considered as a weak converse of the following observation due to P. Deligne. Let H be any algebraic group defined over k and EH a principal H-bundle over a scheme Z. If the pulled back principal H-bundle (FZn)EH over Z is isomorphic to EH for some n>0, where FZ is the absolute Frobenius morphism of Z, then there is a finite étale Galois cover of Z such that the pullback of EH to it is trivializable.

Soient k un corps algébriquement clos de caractéristique positive p et G l'extension à k d'un groupe linéaire algébrique connexe, défini sur Z/pZ. Soit EG un G-fibré principal au-dessus d'une variété projective X défini sur k. Supposons qu'il existe un revêtement étale galoisien f:YX de degré premier à p tel que le pull-back fEG est trivial. Alors il existe un entier n>0 tel que le pull-back (FXn)EG est isomorphe à EG, où FX est le Frobenius absolu de X.

Ce résultat peut être considéré comme une réciproque partielle de l'observation suivante due à P. Deligne. Soit H un groupe algébrique quelconque défini sur k et EH un H-fibré principal au-dessus d'un schéma Z. Si l'image inverse (FZn)EH est isomorphe à EH pour un entier n>0 convenable, alors il existe un revêtement étale galoisien de Z tel que le pull-back de EH à ce revêtement est trivial, où FZ est le Frobenius absolu de Z.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.10.010

Indranil Biswas 1; Laurent Ducrohet 1

1 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
@article{CRMATH_2007__345_9_495_0,
     author = {Indranil Biswas and Laurent Ducrohet},
     title = {An analog of a theorem of {Lange} and {Stuhler} for principal bundles},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {495--497},
     publisher = {Elsevier},
     volume = {345},
     number = {9},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.010},
     language = {en},
}
TY  - JOUR
AU  - Indranil Biswas
AU  - Laurent Ducrohet
TI  - An analog of a theorem of Lange and Stuhler for principal bundles
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 495
EP  - 497
VL  - 345
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2007.10.010
LA  - en
ID  - CRMATH_2007__345_9_495_0
ER  - 
%0 Journal Article
%A Indranil Biswas
%A Laurent Ducrohet
%T An analog of a theorem of Lange and Stuhler for principal bundles
%J Comptes Rendus. Mathématique
%D 2007
%P 495-497
%V 345
%N 9
%I Elsevier
%R 10.1016/j.crma.2007.10.010
%G en
%F CRMATH_2007__345_9_495_0
Indranil Biswas; Laurent Ducrohet. An analog of a theorem of Lange and Stuhler for principal bundles. Comptes Rendus. Mathématique, Volume 345 (2007) no. 9, pp. 495-497. doi : 10.1016/j.crma.2007.10.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.010/

[1] I.M. Isaacs Character Theory of Finite Groups, Academic Press, New York, 1976

[2] N. Jacobson Lectures in Abstract Algebra, Vol. III – Theory of Fields and Galois Theory, D. Van Nostrand Company, Princeton, 1964

[3] H. Lange; U. Stuhler Vektorbündel auf kurven und darstellungen der algebraischen fundamentalgruppe, Math. Z., Volume 156 (1977), pp. 73-83

[4] Y. Laszlo A non-trivial family of bundles fixed by the square of Frobenius, C. R. Acad. Sci. Paris, Volume 333 (2001), pp. 651-656

[5] M.S. Raghunathan Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York, 1972

[6] A. Weil Remarks on the cohomology of groups, Ann. Math., Volume 80 (1964), pp. 149-157

Cited by Sources:

Comments - Policy