[Estimations d'erreur a posteriori d'une méthode SUPG pour des problèmes de diffusion–convection–réaction anisotropes]
Cette Note présente un estimateur d'erreur a posteriori du type résiduel pour des problèmes de diffusion–convection–réaction approché par un schéma SUPG sur des triangulations isotropes ou non de
This Note presents an a posteriori residual error estimator for diffusion–convection–reaction problems approximated by a SUPG scheme on isotropic or anisotropic meshes in
Accepté le :
Publié le :
Thomas Apel 1 ; Serge Nicaise 2
@article{CRMATH_2007__345_11_657_0, author = {Thomas Apel and Serge Nicaise}, title = {A posteriori error estimations of a {SUPG} method for anisotropic diffusion{\textendash}convection{\textendash}reaction problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {657--662}, publisher = {Elsevier}, volume = {345}, number = {11}, year = {2007}, doi = {10.1016/j.crma.2007.10.022}, language = {en}, }
TY - JOUR AU - Thomas Apel AU - Serge Nicaise TI - A posteriori error estimations of a SUPG method for anisotropic diffusion–convection–reaction problems JO - Comptes Rendus. Mathématique PY - 2007 SP - 657 EP - 662 VL - 345 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2007.10.022 LA - en ID - CRMATH_2007__345_11_657_0 ER -
Thomas Apel; Serge Nicaise. A posteriori error estimations of a SUPG method for anisotropic diffusion–convection–reaction problems. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 657-662. doi : 10.1016/j.crma.2007.10.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.022/
[1] A Posteriori Error Estimation in Finite Element Analysis, Wiley, New York, 2000
[2] Balanced a-posteriori error estimates for finite volume type discretizations of convection-dominated elliptic problems, Computing, Volume 55 (1995) no. 4, pp. 305-323
[3] Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics, Teubner, Stuttgart, 1999
[4] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978
[5] A posteriori error estimators, gradient recovery by averaging, and superconvergence, Numer. Math., Volume 103 (2006), pp. 267-298
[6] The reliability of local error estimators for convection–diffusion equations, IMA J. Numer. Anal., Volume 21 (2001) no. 1, pp. 107-122
[7] G. Kunert, A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes, PhD thesis, TU Chemnitz, 1999, Logos, Berlin, 1999
[8] An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes, Numer. Math., Volume 86 (2000), pp. 471-490
[9] A posteriori error estimation for convection dominated problems on anisotropic meshes, Math. Methods Appl. Sci., Volume 26 (2003), pp. 589-617
[10] Convergence and superconvergence analysis of finite element methods on highly nonuniform anisotropic meshes for singularly perturbed reaction–diffusion problems, Appl. Numer. Math., Volume 36 (2001), pp. 129-154
[11] Reliable Methods for Computer Simulation: Error Control and a Posteriori Error Estimates, Studies in Mathematics and its Applications, vol. 33, Elsevier, Amsterdam, 2004
[12] An anisotropic error indicator based on Zienkiewicz–Zhu error estimator: Application to elliptic and parabolic problems, SIAM J. Sci. Comput., Volume 24 (2003) no. 4, pp. 1328-1355
[13] A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley and Teubner, Chichester and Stuttgart, 1996
[14] A posteriori error estimators for convection–diffusion equations, Numer. Math., Volume 80 (1998) no. 4, pp. 641-663
Cité par Sources :
Commentaires - Politique