We present new results about Poisson–Dirichlet point processes and Derrida–Ruelle cascades that are motivated by applications to mean-field spin glass models and, in particular, by the attempt to express Guerra's interpolation in the Sherrington–Kirkpatrick model entirely in the language of the cascades.
Nous présentons une nouvelle propriété des processus ponctuels de Poisson–Dirichlet et des cascades de Derrida–Ruelle. Cela nous permet d'exprimer l'interpolation de Guerra dans le modèle de verres de spin de Sherrington–Kirkpatric entièrement dans le langage des cascades.
Accepted:
Published online:
Dmitry Panchenko 1; Michel Talagrand 2
@article{CRMATH_2007__345_11_653_0, author = {Dmitry Panchenko and Michel Talagrand}, title = {On one property of {Derrida{\textendash}Ruelle} cascades}, journal = {Comptes Rendus. Math\'ematique}, pages = {653--656}, publisher = {Elsevier}, volume = {345}, number = {11}, year = {2007}, doi = {10.1016/j.crma.2007.10.035}, language = {en}, }
Dmitry Panchenko; Michel Talagrand. On one property of Derrida–Ruelle cascades. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 653-656. doi : 10.1016/j.crma.2007.10.035. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.035/
[1] Spin glass computations and Ruelle's probability cascades, J. Stat. Phys., Volume 126 (2007) no. 4–5, pp. 951-976
[2] An extended variational principle for the SK spin-glass model, Phys. Rev. B, Volume 68 (2003), p. 214403
[3] On Ruelle's probability cascades and an abstract cavity method, Comm. Math. Phys., Volume 197 (1998) no. 2, pp. 247-276
[4] Derrida's generalized random energy models I, Models with finitely many hierarchies, Ann. Inst. H. Poincaré Probab. Statist., Volume 40 (2004), pp. 439-480
[5] Random-energy model: An exactly solvable model of disordered systems, Phys. Rev. B, Volume 24 (1981), pp. 2613-2626
[6] A generalization of the random energy model which includes correlations between energies, J. Phys. Lett., Volume 46 (1985), p. L401-L-407
[7] Broken replica symmetry bounds in the mean field spin glass model, Commun. Math. Phys., Volume 233 (2003) no. 1, pp. 1-12
[8] Poisson Processes, Oxford University Press, New York, 1993
[9] Bounds for diluted mean-fields spin glass models, Probab. Theory Related Fields, Volume 130 (2004) no. 3, pp. 319-336
[10] D. Panchenko, M. Talagrand, Guerra's interpolation using Derrida–Ruelle cascades, preprint, arxiv:0709.1514
[11] A mathematical reformulation of Derrida's REM and GREM, Commun. Math. Phys., Volume 108 (1987) no. 2, pp. 225-239
[12] Characterization of invariant measures at the leading edge for competing particle systems, Ann. Probab., Volume 33 (2005) no. 1, pp. 82-113
[13] Spin Glasses: A Challenge for Mathematicians, Springer-Verlag, 2003
[14] Parisi formula, Ann. of Math. (2), Volume 163 (2006) no. 1, pp. 221-263
Cited by Sources:
Comments - Policy