[Contrôlabilité d'une classe de systèmes réaction–diffusion : la condition de Kalman généralisée]
Dans cette Note, on étudie la contrôlabilité d'une classe de systèmes paraboliques de la forme avec des conditions de Dirichlet sur le bord d'un domaine borné Ω, où est un sous-domaine. Ici , et on montre que la condition algébrique de Kalman s'étend à de tels systèmes.
In this Note, we study the controllability of a class of parabolic systems of the form with Dirichlet conditions on the boundary of a bounded domain Ω, where is a subdomain. Here , and we prove that the algebraic Kalman condition extends to such systems.
Accepté le :
Publié le :
Farid Ammar-Khodja 1 ; Assia Benabdallah 2 ; Cédric Dupaix 1 ; Manuel González-Burgos 3
@article{CRMATH_2007__345_10_543_0, author = {Farid Ammar-Khodja and Assia Benabdallah and C\'edric Dupaix and Manuel Gonz\'alez-Burgos}, title = {Controllability for a class of reaction{\textendash}diffusion systems: the generalized {Kalman's} condition}, journal = {Comptes Rendus. Math\'ematique}, pages = {543--548}, publisher = {Elsevier}, volume = {345}, number = {10}, year = {2007}, doi = {10.1016/j.crma.2007.10.023}, language = {en}, }
TY - JOUR AU - Farid Ammar-Khodja AU - Assia Benabdallah AU - Cédric Dupaix AU - Manuel González-Burgos TI - Controllability for a class of reaction–diffusion systems: the generalized Kalman's condition JO - Comptes Rendus. Mathématique PY - 2007 SP - 543 EP - 548 VL - 345 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2007.10.023 LA - en ID - CRMATH_2007__345_10_543_0 ER -
%0 Journal Article %A Farid Ammar-Khodja %A Assia Benabdallah %A Cédric Dupaix %A Manuel González-Burgos %T Controllability for a class of reaction–diffusion systems: the generalized Kalman's condition %J Comptes Rendus. Mathématique %D 2007 %P 543-548 %V 345 %N 10 %I Elsevier %R 10.1016/j.crma.2007.10.023 %G en %F CRMATH_2007__345_10_543_0
Farid Ammar-Khodja; Assia Benabdallah; Cédric Dupaix; Manuel González-Burgos. Controllability for a class of reaction–diffusion systems: the generalized Kalman's condition. Comptes Rendus. Mathématique, Volume 345 (2007) no. 10, pp. 543-548. doi : 10.1016/j.crma.2007.10.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.023/
[1] Null-controllability of some reaction–diffusion systems with one control force, J. Math. Anal. Appl., Volume 320 (2006) no. 2, pp. 928-943
[2] Null controllability of some systems of parabolic type by one control force, ESAIM Control Optim. Calc. Var., Volume 11 (2005) no. 3, pp. 426-448
[3] The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, Volume 5 (2000) no. 4–6, pp. 465-514
[4] Controllability of Evolution Equations, Lecture Notes Ser., vol. 34, Seoul National University, Korea, 1996
[5] Controllability results for some nonlinear coupled parabolic systems by one control force, Asymptotic Anal., Volume 46 (2006), pp. 123-162
[6] M. González-Burgos, L. de Teresa, Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Systems Control Lett., submitted for publication
[7] Ordinary Differential Equations, Dover Publications, New York, 1944
[8] Topics in Mathematical Control Theory, McGraw-Hill Book Co., New York, 1969
[9] Controllability of a system of parabolic equations with non-diagonal diffusion matrix, IMA J. Math. Control Inform., Volume 22 (2005) no. 2, pp. 187-199
[10] Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., Volume 20 (1978) no. 4, pp. 639-739
[11] Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, Volume 25 (2000) no. 1–2, pp. 39-72
Cité par Sources :
Commentaires - Politique