[Une inégalité pour les valeurs propres de Floquet et de Perron de systèmes différentiels monotones et d'équations structurées en âge]
La (première) valeur propre de Floquet décrit le taux de croissance des systèmes différentiels linéaires monotones à coefficients périodiques. Nous définissons une moyenne arithmético-géométrique en temps des coefficients, qui nous permet de démontrer que la valeur propre de Perron pour le système ainsi moyenné est plus petite que celle de Floquet. La méthode s'applique aux Équations aux Dérivées Partielles et nous l'utilisons pour un système d'équations structurées en âge qui décrit le cycle cellulaire. Cette opposition entre valeurs propres de Floquet et de Perron modélise la perte de contrôle circadien pour le cycle cellulaire des cellules cancéreuses.
For monotone linear differential systems with periodic coefficients, the (first) Floquet eigenvalue measures the growth rate of the system. We define an appropriate arithmetico-geometric time average of the coefficients for which we can prove that the Perron eigenvalue is smaller than the Floquet eigenvalue. We apply this method to Partial Differential Equations, and we use it for an age-structured systems of equations for the cell cycle. This opposition between Floquet and Perron eigenvalues models the loss of circadian rhythms by cancer cells.
Accepté le :
Publié le :
Jean Clairambault 1 ; Stéphane Gaubert 2 ; Benoît Perthame 1, 3
@article{CRMATH_2007__345_10_549_0, author = {Jean Clairambault and St\'ephane Gaubert and Beno{\^\i}t Perthame}, title = {An inequality for the {Perron} and {Floquet} eigenvalues of monotone differential systems and age structured equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {549--554}, publisher = {Elsevier}, volume = {345}, number = {10}, year = {2007}, doi = {10.1016/j.crma.2007.10.001}, language = {en}, }
TY - JOUR AU - Jean Clairambault AU - Stéphane Gaubert AU - Benoît Perthame TI - An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations JO - Comptes Rendus. Mathématique PY - 2007 SP - 549 EP - 554 VL - 345 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2007.10.001 LA - en ID - CRMATH_2007__345_10_549_0 ER -
%0 Journal Article %A Jean Clairambault %A Stéphane Gaubert %A Benoît Perthame %T An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations %J Comptes Rendus. Mathématique %D 2007 %P 549-554 %V 345 %N 10 %I Elsevier %R 10.1016/j.crma.2007.10.001 %G en %F CRMATH_2007__345_10_549_0
Jean Clairambault; Stéphane Gaubert; Benoît Perthame. An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 10, pp. 549-554. doi : 10.1016/j.crma.2007.10.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.001/
[1] Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus, PLoS Computational Biology, Volume 3 (2007) no. 4, p. e68 | DOI
[2] Desynchronization rate in cell populations: mathematical modeling and experimental data, J. Theor. Biol., Volume 208 (2001), pp. 185-199
[3] Circadian rhythm and tumour growth, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006) no. 1, pp. 17-22
[4] Effect of light and food schedules on liver and tumor molecular clocks in mice, J. Nat. Cancer Inst., Volume 97 (2005) no. 7, pp. 507-517
[5] A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase, Proc. Nat. Acad. Sci. USA, Volume 88 (1991), pp. 9107-9111
[6] Modeling the mammalian circadian clock: Sensitivity analysis and multiplicity of oscillatory mechanisms, J. Theor. Biol., Volume 230 (2004), pp. 541-562
[7] The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, vol. 68, Springer-Verlag, 1986
[8] General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl., Volume 84 (2005) no. 9, pp. 1235-1260
[9] Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells, Cell, Volume 119 (2004), pp. 693-705
[10] Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser, Basel, 2007
- Optimization of additive chemotherapy combinations for an in vitro cell cycle model with constant drug exposures, Mathematical Biosciences, Volume 338 (2021), p. 108595 | DOI:10.1016/j.mbs.2021.108595
- Qualitative Properties of a Cell Proliferating Model with Multi-phase Transition and Age Structure, Advances in Science, Technology and Engineering Systems Journal, Volume 5 (2020) no. 6, p. 01 | DOI:10.25046/aj050601
- Sharp seasonal threshold property for cooperative population dynamics with concave nonlinearities, Bulletin des Sciences Mathématiques, Volume 147 (2018), p. 58 | DOI:10.1016/j.bulsci.2018.06.001
- Physiologically Structured Cell Population Dynamic Models with Applications to Combined Drug Delivery Optimisation in Oncology, Mathematical Modelling of Natural Phenomena, Volume 11 (2016) no. 6, p. 45 | DOI:10.1051/mmnp/201611604
- Time fluctuations in a population model of adaptive dynamics, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 32 (2015) no. 1, p. 41 | DOI:10.1016/j.anihpc.2013.10.001
- Discrete limit and monotonicity properties of the Floquet eigenvalue in an age structured cell division cycle model, Journal of Mathematical Biology, Volume 71 (2015) no. 6-7, p. 1663 | DOI:10.1007/s00285-015-0874-3
- , 53rd IEEE Conference on Decision and Control (2014), p. 1600 | DOI:10.1109/cdc.2014.7039628
- Deterministic Mathematical Modelling for Cancer Chronotherapeutics: Cell Population Dynamics and Treatment Optimization, Mathematical Oncology 2013 (2014), p. 265 | DOI:10.1007/978-1-4939-0458-7_9
- Synchronisation and control of proliferation in cycling cell population models with age structure, Mathematics and Computers in Simulation, Volume 96 (2014), p. 66 | DOI:10.1016/j.matcom.2012.03.005
- Designing proliferating cell population models with functional targets for control by anti-cancer drugs, Discrete Continuous Dynamical Systems - B, Volume 18 (2013) no. 4, p. 865 | DOI:10.3934/dcdsb.2013.18.865
- Self-similarity in a general aggregation–fragmentation problem. Application to fitness analysis, Journal de Mathématiques Pures et Appliquées, Volume 98 (2012) no. 1, p. 1 | DOI:10.1016/j.matpur.2012.01.004
- Modeling Biological Rhythms in Cell Populations, Mathematical Modelling of Natural Phenomena, Volume 7 (2012) no. 6, p. 107 | DOI:10.1051/mmnp/20127606
- Circadian rhythm and cell population growth, Mathematical and Computer Modelling, Volume 53 (2011) no. 7-8, p. 1558 | DOI:10.1016/j.mcm.2010.05.034
- EIGENELEMENTS OF A GENERAL AGGREGATION-FRAGMENTATION MODEL, Mathematical Models and Methods in Applied Sciences, Volume 20 (2010) no. 05, p. 757 | DOI:10.1142/s021820251000443x
- Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments, Mathematical Modelling of Natural Phenomena, Volume 4 (2009) no. 3, p. 12 | DOI:10.1051/mmnp/20094302
- Comparison of Perron and Floquet Eigenvalues in Age Structured Cell Division Cycle Models, Mathematical Modelling of Natural Phenomena, Volume 4 (2009) no. 3, p. 183 | DOI:10.1051/mmnp/20094308
- Nonlinear Renewal Equations, Selected Topics in Cancer Modeling (2008), p. 1 | DOI:10.1007/978-0-8176-4713-1_4
Cité par 17 documents. Sources : Crossref
Commentaires - Politique