For monotone linear differential systems with periodic coefficients, the (first) Floquet eigenvalue measures the growth rate of the system. We define an appropriate arithmetico-geometric time average of the coefficients for which we can prove that the Perron eigenvalue is smaller than the Floquet eigenvalue. We apply this method to Partial Differential Equations, and we use it for an age-structured systems of equations for the cell cycle. This opposition between Floquet and Perron eigenvalues models the loss of circadian rhythms by cancer cells.
La (première) valeur propre de Floquet décrit le taux de croissance des systèmes différentiels linéaires monotones à coefficients périodiques. Nous définissons une moyenne arithmético-géométrique en temps des coefficients, qui nous permet de démontrer que la valeur propre de Perron pour le système ainsi moyenné est plus petite que celle de Floquet. La méthode s'applique aux Équations aux Dérivées Partielles et nous l'utilisons pour un système d'équations structurées en âge qui décrit le cycle cellulaire. Cette opposition entre valeurs propres de Floquet et de Perron modélise la perte de contrôle circadien pour le cycle cellulaire des cellules cancéreuses.
Accepted:
Published online:
Jean Clairambault 1; Stéphane Gaubert 2; Benoît Perthame 1, 3
@article{CRMATH_2007__345_10_549_0, author = {Jean Clairambault and St\'ephane Gaubert and Beno{\^\i}t Perthame}, title = {An inequality for the {Perron} and {Floquet} eigenvalues of monotone differential systems and age structured equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {549--554}, publisher = {Elsevier}, volume = {345}, number = {10}, year = {2007}, doi = {10.1016/j.crma.2007.10.001}, language = {en}, }
TY - JOUR AU - Jean Clairambault AU - Stéphane Gaubert AU - Benoît Perthame TI - An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations JO - Comptes Rendus. Mathématique PY - 2007 SP - 549 EP - 554 VL - 345 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2007.10.001 LA - en ID - CRMATH_2007__345_10_549_0 ER -
%0 Journal Article %A Jean Clairambault %A Stéphane Gaubert %A Benoît Perthame %T An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations %J Comptes Rendus. Mathématique %D 2007 %P 549-554 %V 345 %N 10 %I Elsevier %R 10.1016/j.crma.2007.10.001 %G en %F CRMATH_2007__345_10_549_0
Jean Clairambault; Stéphane Gaubert; Benoît Perthame. An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 10, pp. 549-554. doi : 10.1016/j.crma.2007.10.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.001/
[1] Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus, PLoS Computational Biology, Volume 3 (2007) no. 4, p. e68 | DOI
[2] Desynchronization rate in cell populations: mathematical modeling and experimental data, J. Theor. Biol., Volume 208 (2001), pp. 185-199
[3] Circadian rhythm and tumour growth, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006) no. 1, pp. 17-22
[4] Effect of light and food schedules on liver and tumor molecular clocks in mice, J. Nat. Cancer Inst., Volume 97 (2005) no. 7, pp. 507-517
[5] A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase, Proc. Nat. Acad. Sci. USA, Volume 88 (1991), pp. 9107-9111
[6] Modeling the mammalian circadian clock: Sensitivity analysis and multiplicity of oscillatory mechanisms, J. Theor. Biol., Volume 230 (2004), pp. 541-562
[7] The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, vol. 68, Springer-Verlag, 1986
[8] General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl., Volume 84 (2005) no. 9, pp. 1235-1260
[9] Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells, Cell, Volume 119 (2004), pp. 693-705
[10] Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser, Basel, 2007
Cited by Sources:
Comments - Policy