Comptes Rendus
Partial Differential Equations
An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations
[Une inégalité pour les valeurs propres de Floquet et de Perron de systèmes différentiels monotones et d'équations structurées en âge]
Comptes Rendus. Mathématique, Volume 345 (2007) no. 10, pp. 549-554.

La (première) valeur propre de Floquet décrit le taux de croissance des systèmes différentiels linéaires monotones à coefficients périodiques. Nous définissons une moyenne arithmético-géométrique en temps des coefficients, qui nous permet de démontrer que la valeur propre de Perron pour le système ainsi moyenné est plus petite que celle de Floquet. La méthode s'applique aux Équations aux Dérivées Partielles et nous l'utilisons pour un système d'équations structurées en âge qui décrit le cycle cellulaire. Cette opposition entre valeurs propres de Floquet et de Perron modélise la perte de contrôle circadien pour le cycle cellulaire des cellules cancéreuses.

For monotone linear differential systems with periodic coefficients, the (first) Floquet eigenvalue measures the growth rate of the system. We define an appropriate arithmetico-geometric time average of the coefficients for which we can prove that the Perron eigenvalue is smaller than the Floquet eigenvalue. We apply this method to Partial Differential Equations, and we use it for an age-structured systems of equations for the cell cycle. This opposition between Floquet and Perron eigenvalues models the loss of circadian rhythms by cancer cells.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.10.001

Jean Clairambault 1 ; Stéphane Gaubert 2 ; Benoît Perthame 1, 3

1 INRIA, projet BANG, domaine de Voluceau, BP 105, 78153 Le Chesnay cedex, France
2 INRIA, projet MAXPLUS, domaine de Voluceau, BP 105, 78153 Le Chesnay cedex, France
3 Département de mathématiques et applications, UMR 8553, École normale supérieure, 45, rue d'Ulm, 75230 Paris cedex 05, France
@article{CRMATH_2007__345_10_549_0,
     author = {Jean Clairambault and St\'ephane Gaubert and Beno{\^\i}t Perthame},
     title = {An inequality for the {Perron} and {Floquet} eigenvalues of monotone differential systems and age structured equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {549--554},
     publisher = {Elsevier},
     volume = {345},
     number = {10},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.001},
     language = {en},
}
TY  - JOUR
AU  - Jean Clairambault
AU  - Stéphane Gaubert
AU  - Benoît Perthame
TI  - An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 549
EP  - 554
VL  - 345
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2007.10.001
LA  - en
ID  - CRMATH_2007__345_10_549_0
ER  - 
%0 Journal Article
%A Jean Clairambault
%A Stéphane Gaubert
%A Benoît Perthame
%T An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations
%J Comptes Rendus. Mathématique
%D 2007
%P 549-554
%V 345
%N 10
%I Elsevier
%R 10.1016/j.crma.2007.10.001
%G en
%F CRMATH_2007__345_10_549_0
Jean Clairambault; Stéphane Gaubert; Benoît Perthame. An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 10, pp. 549-554. doi : 10.1016/j.crma.2007.10.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.001/

[1] S. Bernard; D. Gonze; B. Čajavec; H. Herzel; A. Kramer Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus, PLoS Computational Biology, Volume 3 (2007) no. 4, p. e68 | DOI

[2] G. Chiorino; J.A.J. Metz; D. Tomasoni; P. Ubezio Desynchronization rate in cell populations: mathematical modeling and experimental data, J. Theor. Biol., Volume 208 (2001), pp. 185-199

[3] J. Clairambault; P. Michel; B. Perthame Circadian rhythm and tumour growth, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006) no. 1, pp. 17-22

[4] E. Filipski; P.F. Innominato; M.W. Wu; X.M. Li; S. Iacobelli; L.J. Xian; F. Lévi Effect of light and food schedules on liver and tumor molecular clocks in mice, J. Nat. Cancer Inst., Volume 97 (2005) no. 7, pp. 507-517

[5] A. Goldbeter A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase, Proc. Nat. Acad. Sci. USA, Volume 88 (1991), pp. 9107-9111

[6] J.-C. Leloup; A. Goldbeter Modeling the mammalian circadian clock: Sensitivity analysis and multiplicity of oscillatory mechanisms, J. Theor. Biol., Volume 230 (2004), pp. 541-562

[7] J.A.J. Metz; O. Diekmann The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, vol. 68, Springer-Verlag, 1986

[8] P. Michel; S. Mischler; B. Perthame General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl., Volume 84 (2005) no. 9, pp. 1235-1260

[9] E. Nagoshi; C. Saini; C. Bauer; T. Laroche; F. Naef; U. Schibler Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells, Cell, Volume 119 (2004), pp. 693-705

[10] B. Perthame Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser, Basel, 2007

  • Tim Cardilin; Torbjörn Lundh; Mats Jirstrand Optimization of additive chemotherapy combinations for an in vitro cell cycle model with constant drug exposures, Mathematical Biosciences, Volume 338 (2021), p. 108595 | DOI:10.1016/j.mbs.2021.108595
  • Youssef El Alaoui; Larbi Alaoui Qualitative Properties of a Cell Proliferating Model with Multi-phase Transition and Age Structure, Advances in Science, Technology and Engineering Systems Journal, Volume 5 (2020) no. 6, p. 01 | DOI:10.25046/aj050601
  • Hongjun Ji; Martin Strugarek Sharp seasonal threshold property for cooperative population dynamics with concave nonlinearities, Bulletin des Sciences Mathématiques, Volume 147 (2018), p. 58 | DOI:10.1016/j.bulsci.2018.06.001
  • J. Clairambault; O. Fercoq; G. Bocharov; J. Clairambault; V. Volpert Physiologically Structured Cell Population Dynamic Models with Applications to Combined Drug Delivery Optimisation in Oncology, Mathematical Modelling of Natural Phenomena, Volume 11 (2016) no. 6, p. 45 | DOI:10.1051/mmnp/201611604
  • Sepideh Mirrahimi; Benoît Perthame; Panagiotis E. Souganidis Time fluctuations in a population model of adaptive dynamics, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 32 (2015) no. 1, p. 41 | DOI:10.1016/j.anihpc.2013.10.001
  • Stéphane Gaubert; Thomas Lepoutre Discrete limit and monotonicity properties of the Floquet eigenvalue in an age structured cell division cycle model, Journal of Mathematical Biology, Volume 71 (2015) no. 6-7, p. 1663 | DOI:10.1007/s00285-015-0874-3
  • Vincent Calvez; Pierre Gabriel; Stephane Gaubert, 53rd IEEE Conference on Decision and Control (2014), p. 1600 | DOI:10.1109/cdc.2014.7039628
  • Jean Clairambault Deterministic Mathematical Modelling for Cancer Chronotherapeutics: Cell Population Dynamics and Treatment Optimization, Mathematical Oncology 2013 (2014), p. 265 | DOI:10.1007/978-1-4939-0458-7_9
  • Frédérique Billy; Jean Clairambaultt; Olivier Fercoq; Stéphane Gaubertt; Thomas Lepoutre; Thomas Ouillon; Shoko Saito Synchronisation and control of proliferation in cycling cell population models with age structure, Mathematics and Computers in Simulation, Volume 96 (2014), p. 66 | DOI:10.1016/j.matcom.2012.03.005
  • Frédérique Billy; Jean Clairambault Designing proliferating cell population models with functional targets for control by anti-cancer drugs, Discrete Continuous Dynamical Systems - B, Volume 18 (2013) no. 4, p. 865 | DOI:10.3934/dcdsb.2013.18.865
  • Vincent Calvez; Marie Doumic; Pierre Gabriel Self-similarity in a general aggregation–fragmentation problem. Application to fitness analysis, Journal de Mathématiques Pures et Appliquées, Volume 98 (2012) no. 1, p. 1 | DOI:10.1016/j.matpur.2012.01.004
  • R. El Cheikh; T. Lepoutre; S. Bernard Modeling Biological Rhythms in Cell Populations, Mathematical Modelling of Natural Phenomena, Volume 7 (2012) no. 6, p. 107 | DOI:10.1051/mmnp/20127606
  • Jean Clairambault; Stéphane Gaubert; Thomas Lepoutre Circadian rhythm and cell population growth, Mathematical and Computer Modelling, Volume 53 (2011) no. 7-8, p. 1558 | DOI:10.1016/j.mcm.2010.05.034
  • MARIE DOUMIC JAUFFRET; PIERRE GABRIEL EIGENELEMENTS OF A GENERAL AGGREGATION-FRAGMENTATION MODEL, Mathematical Models and Methods in Applied Sciences, Volume 20 (2010) no. 05, p. 757 | DOI:10.1142/s021820251000443x
  • J. Clairambault Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments, Mathematical Modelling of Natural Phenomena, Volume 4 (2009) no. 3, p. 12 | DOI:10.1051/mmnp/20094302
  • J. Clairambault; S. Gaubert; Th. Lepoutre Comparison of Perron and Floquet Eigenvalues in Age Structured Cell Division Cycle Models, Mathematical Modelling of Natural Phenomena, Volume 4 (2009) no. 3, p. 183 | DOI:10.1051/mmnp/20094308
  • Benoît Perthame; Suman Kumar Tumuluri Nonlinear Renewal Equations, Selected Topics in Cancer Modeling (2008), p. 1 | DOI:10.1007/978-0-8176-4713-1_4

Cité par 17 documents. Sources : Crossref

Commentaires - Politique