Comptes Rendus
Partial Differential Equations
An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations
Comptes Rendus. Mathématique, Volume 345 (2007) no. 10, pp. 549-554.

For monotone linear differential systems with periodic coefficients, the (first) Floquet eigenvalue measures the growth rate of the system. We define an appropriate arithmetico-geometric time average of the coefficients for which we can prove that the Perron eigenvalue is smaller than the Floquet eigenvalue. We apply this method to Partial Differential Equations, and we use it for an age-structured systems of equations for the cell cycle. This opposition between Floquet and Perron eigenvalues models the loss of circadian rhythms by cancer cells.

La (première) valeur propre de Floquet décrit le taux de croissance des systèmes différentiels linéaires monotones à coefficients périodiques. Nous définissons une moyenne arithmético-géométrique en temps des coefficients, qui nous permet de démontrer que la valeur propre de Perron pour le système ainsi moyenné est plus petite que celle de Floquet. La méthode s'applique aux Équations aux Dérivées Partielles et nous l'utilisons pour un système d'équations structurées en âge qui décrit le cycle cellulaire. Cette opposition entre valeurs propres de Floquet et de Perron modélise la perte de contrôle circadien pour le cycle cellulaire des cellules cancéreuses.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.10.001

Jean Clairambault 1; Stéphane Gaubert 2; Benoît Perthame 1, 3

1 INRIA, projet BANG, domaine de Voluceau, BP 105, 78153 Le Chesnay cedex, France
2 INRIA, projet MAXPLUS, domaine de Voluceau, BP 105, 78153 Le Chesnay cedex, France
3 Département de mathématiques et applications, UMR 8553, École normale supérieure, 45, rue d'Ulm, 75230 Paris cedex 05, France
@article{CRMATH_2007__345_10_549_0,
     author = {Jean Clairambault and St\'ephane Gaubert and Beno{\^\i}t Perthame},
     title = {An inequality for the {Perron} and {Floquet} eigenvalues of monotone differential systems and age structured equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {549--554},
     publisher = {Elsevier},
     volume = {345},
     number = {10},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.001},
     language = {en},
}
TY  - JOUR
AU  - Jean Clairambault
AU  - Stéphane Gaubert
AU  - Benoît Perthame
TI  - An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 549
EP  - 554
VL  - 345
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2007.10.001
LA  - en
ID  - CRMATH_2007__345_10_549_0
ER  - 
%0 Journal Article
%A Jean Clairambault
%A Stéphane Gaubert
%A Benoît Perthame
%T An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations
%J Comptes Rendus. Mathématique
%D 2007
%P 549-554
%V 345
%N 10
%I Elsevier
%R 10.1016/j.crma.2007.10.001
%G en
%F CRMATH_2007__345_10_549_0
Jean Clairambault; Stéphane Gaubert; Benoît Perthame. An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 10, pp. 549-554. doi : 10.1016/j.crma.2007.10.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.001/

[1] S. Bernard; D. Gonze; B. Čajavec; H. Herzel; A. Kramer Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus, PLoS Computational Biology, Volume 3 (2007) no. 4, p. e68 | DOI

[2] G. Chiorino; J.A.J. Metz; D. Tomasoni; P. Ubezio Desynchronization rate in cell populations: mathematical modeling and experimental data, J. Theor. Biol., Volume 208 (2001), pp. 185-199

[3] J. Clairambault; P. Michel; B. Perthame Circadian rhythm and tumour growth, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006) no. 1, pp. 17-22

[4] E. Filipski; P.F. Innominato; M.W. Wu; X.M. Li; S. Iacobelli; L.J. Xian; F. Lévi Effect of light and food schedules on liver and tumor molecular clocks in mice, J. Nat. Cancer Inst., Volume 97 (2005) no. 7, pp. 507-517

[5] A. Goldbeter A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase, Proc. Nat. Acad. Sci. USA, Volume 88 (1991), pp. 9107-9111

[6] J.-C. Leloup; A. Goldbeter Modeling the mammalian circadian clock: Sensitivity analysis and multiplicity of oscillatory mechanisms, J. Theor. Biol., Volume 230 (2004), pp. 541-562

[7] J.A.J. Metz; O. Diekmann The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, vol. 68, Springer-Verlag, 1986

[8] P. Michel; S. Mischler; B. Perthame General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl., Volume 84 (2005) no. 9, pp. 1235-1260

[9] E. Nagoshi; C. Saini; C. Bauer; T. Laroche; F. Naef; U. Schibler Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells, Cell, Volume 119 (2004), pp. 693-705

[10] B. Perthame Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser, Basel, 2007

Cited by Sources:

Comments - Policy