[La méthode de Galerkine discontinue symétrique est stable en une dimension d'espace pour tout ordre polynômial ]
Dans cette Note, nous montrons qu'en une dimension d'espace, la méthode de Galerkine discontinue symétrique pour les problèmes elliptiques d'ordre deux est stable pour tout ordre polynômial sans devoir introduire de paramètre de stabilisation. La méthode fournit des ordres de convergence optimaux dans la norme d'énergie (norme du gradient brisé plus des termes de saut) et dans la norme et peut être écrite sous forme conservative avec des flux indépendants de tout paramètre de stabilisation.
In this Note we prove that in one space dimension, the symmetric discontinuous Galerkin method for second order elliptic problems is stable for polynomial orders without using any stabilization parameter. The method yields optimal convergence rates in both the energy norm (-norm of broken gradient plus jump terms) and the -norm and can be written in conservative form with fluxes independent of any stabilization parameter.
Accepté le :
Publié le :
Erik Burman 1 ; Alexandre Ern 2 ; Igor Mozolevski 2, 3 ; Benjamin Stamm 1
@article{CRMATH_2007__345_10_599_0, author = {Erik Burman and Alexandre Ern and Igor Mozolevski and Benjamin Stamm}, title = {The symmetric discontinuous {Galerkin} method does not need stabilization in {1D} for polynomial orders $ p\ensuremath{\geqslant}2$}, journal = {Comptes Rendus. Math\'ematique}, pages = {599--602}, publisher = {Elsevier}, volume = {345}, number = {10}, year = {2007}, doi = {10.1016/j.crma.2007.10.028}, language = {en}, }
TY - JOUR AU - Erik Burman AU - Alexandre Ern AU - Igor Mozolevski AU - Benjamin Stamm TI - The symmetric discontinuous Galerkin method does not need stabilization in 1D for polynomial orders $ p⩾2$ JO - Comptes Rendus. Mathématique PY - 2007 SP - 599 EP - 602 VL - 345 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2007.10.028 LA - en ID - CRMATH_2007__345_10_599_0 ER -
%0 Journal Article %A Erik Burman %A Alexandre Ern %A Igor Mozolevski %A Benjamin Stamm %T The symmetric discontinuous Galerkin method does not need stabilization in 1D for polynomial orders $ p⩾2$ %J Comptes Rendus. Mathématique %D 2007 %P 599-602 %V 345 %N 10 %I Elsevier %R 10.1016/j.crma.2007.10.028 %G en %F CRMATH_2007__345_10_599_0
Erik Burman; Alexandre Ern; Igor Mozolevski; Benjamin Stamm. The symmetric discontinuous Galerkin method does not need stabilization in 1D for polynomial orders $ p⩾2$. Comptes Rendus. Mathématique, Volume 345 (2007) no. 10, pp. 599-602. doi : 10.1016/j.crma.2007.10.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.028/
[1] An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., Volume 19 (1982) no. 4, pp. 742-760
[2] Finite element methods for elliptic equations using nonconforming elements, Math. Comp., Volume 31 (1977), pp. 44-59
[3] E. Burman, B. Stamm, Low order discontinuous Galerkin methods for second order elliptic problems, Technical Report 04-2007, EPFL-IACS, 2007
[4] Discontinuous Galerkin methods for Friedrichs' systems. I. General theory, SIAM J. Numer. Anal., Volume 44 (2006) no. 2, pp. 753-778
[5] Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one dimensional case, Numer. Math., Volume 99 (2004), pp. 113-130
[6] Analysis of a nonsymmetric discontinuous Galerkin method for elliptic problems: stability and energy error estimates, SIAM J. Numer. Anal., Volume 42 (2004) no. 1, pp. 252-264
[7] A discontinuous hp finite element method for diffusion problems, J. Comput. Phys., Volume 146 (1998) no. 2, pp. 491-519
[8] A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal., Volume 39 (2001) no. 3, pp. 902-931
Cité par Sources :
Commentaires - Politique