Stiff stochastic systems are usually solved numerically by (semi-)implicit methods, since explicit methods, such as the Euler–Maruyama scheme, face severe stepsize reductions. This comes at the cost of solving linear algebra systems at each step and can be expensive for large systems and complicated to implement for complex problems. In this Note, we introduce a new class of explicit methods for stochastic differential equations with multi-dimensional Wiener processes, with much better stability properties (in the mean square sense) than existing explicit methods. These new methods are as easy to implement as standard explicit schemes but much more efficient for handling stiff stochastic problems.
Les équations différentielles stochastiques (EDS) raides sont usuellements résolues par des schémas (semi-)implicites, car l'utilisation de schémas explicites, comme par exemple celui d'Euler–Maruyama, entraîne une sévère réduction du pas de temps. L'utilisation de schémas implicites implique la résolution de systèmes linéaires à chaque pas de temps. Cette procédure est coûteuse pour des grands systèmes d'équations et peut être difficile à réaliser pour des systèmes complexes. Dans cette Note, nous proposons une nouvelle classe de schémas explicites pour des EDS avec un processus de Wiener multidimensionel, qui ont des propriétés de stabilité (en moyenne quadratique) bien plus favorables que les schémas explicites existants. Ces nouveaus schémas sont aussi aisés à réaliser que les schémas explicites traditionnels, mais plus efficaces pour résoudre numériquement des équations différentielles stochastiques raides.
Accepted:
Published online:
Assyr Abdulle 1; Stéphane Cirilli 2
@article{CRMATH_2007__345_10_593_0, author = {Assyr Abdulle and St\'ephane Cirilli}, title = {Stabilized methods for stiff stochastic systems}, journal = {Comptes Rendus. Math\'ematique}, pages = {593--598}, publisher = {Elsevier}, volume = {345}, number = {10}, year = {2007}, doi = {10.1016/j.crma.2007.10.009}, language = {en}, }
Assyr Abdulle; Stéphane Cirilli. Stabilized methods for stiff stochastic systems. Comptes Rendus. Mathématique, Volume 345 (2007) no. 10, pp. 593-598. doi : 10.1016/j.crma.2007.10.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.009/
[1] Second order Chebyshev methods based on orthogonal polynomials, Numer. Math., Volume 90 (2001), pp. 1-18
[2] Fourth order Chebyshev methods with recurrence relation, SIAM J. Sci. Comput., Volume 23 (2002) no. 6, pp. 2041-2054
[3] A. Abdulle, S. Cirilli, S-ROCK: Chebyshev methods for stiff stochastic differential equations, preprint
[4] P.M. Burrage, Runge–Kutta methods for stochastic differential equations, PhD Thesis, University of Queensland, Brisbane, Australia, 1999
[5] Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer-Verlag, 1996
[6] Mean-square and asymptotic stability of numerical methods for stochastic ordinary differential equations, SIAM J. Numer Anal., Volume 38 (2000) no. 3, pp. 753-769
[7] Numerical Solution of Stochastic Differential Equations, Springer-Verlag, 1992
[8] How to Solve Stiff Systems of Differential Equations by Explicit Methods, CRC Press, Boca Raton, 1994 (pp. 45–80)
[9] Stochastic Numerics for Mathematical Physics, Scientific Computing, Springer, 2004
[10] Stochastic Differential Equations, Springer-Verlag, 2005
[11] Runge–Kutta Methods for the Numerical Solution of Stochastic Differential Equations, Shaker Verlag, Aachen, 2003
[12] Numerical treatment of stochastic differential equations, SIAM J. Numer Anal., Volume 19 (1982) no. 3, pp. 604-613
[13] RKC: an explicit solver for parabolic PDEs, J. Comput. Appl. Math., Volume 88 (1998), pp. 316-326
Cited by Sources:
Comments - Policy