We consider the Stefan problem on a bounded domain, where β is an arbitrary maximal monotone graph in . Existence of renormalized solutions is established for general -data without any additional condition on the graph β.
On étudie le problème de Stefan , où β est un graphe maximal monotone quelconque dans . L'existence des solutions renormalisées est établie pour des données intégrables sans aucune hypothèse supplémentaire sur le graphe β.
Accepted:
Published online:
Karima Sbihi 1; Petra Wittbold 2
@article{CRMATH_2007__345_11_629_0, author = {Karima Sbihi and Petra Wittbold}, title = {Existence de solutions renormalis\'ees pour un probl\`eme de {Stefan} non lin\'eaire}, journal = {Comptes Rendus. Math\'ematique}, pages = {629--632}, publisher = {Elsevier}, volume = {345}, number = {11}, year = {2007}, doi = {10.1016/j.crma.2007.10.042}, language = {fr}, }
Karima Sbihi; Petra Wittbold. Existence de solutions renormalisées pour un problème de Stefan non linéaire. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 629-632. doi : 10.1016/j.crma.2007.10.042. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.042/
[1] Quasilinear elliptic-parabolic differential equations, Math. Z., Volume 183 (1983), pp. 311-341
[2] Existence of renormalized solutions of degenerate elliptic-parabolic problems, Proc. Roy. Soc. Edinburgh Sect. A, Volume 133 (2003), pp. 477-496
[3] A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions, Ann. Inst. H. Poincaré Analyse Non Linéaire, Volume 24 (2007), pp. 61-89
[4] F. Andreu, N. Igbida, J.M. Mazon, J. Toledo, Renormalized solutions for degenerate elliptic-parabolic problems with nonlinear dynamical boundary conditions and -data, preprint
[5] A few results on a class of degenerate parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 18 (1991), pp. 213-249
[6] Stefan problems with nonlinear diffusion and convection, J. Differential Equations, Volume 210 (2005), pp. 383-428
[7] Uniqueness for nonlinear degenerate problems, NoDEA, Volume 10 (2003), pp. 287-307
[8] N. Igbida, P. Wittbold, Renormalized solution for Stefan type problems: Existence and uniqueness, preprint
[9] First order quasilinear equations with several independent variables, Mat. Sb., Volume 81 (1970) no. 123, pp. 228-255
[10] On the existence of weak solutions for quasi-linear parabolic initial boundary-value problems, Proc. Roy. Soc. Edinburgh, Volume 89 (1981), pp. 217-237
[11] K. Sbihi, Etude de quelques E.D.P. non linéaires dans avec des conditions générales sur le bord, Thèse de doctorat, Strasbourg, 2006
[12] Existence and convergence theorems for doubly nonlinear partial differential equations of elliptic-parabolic type, J. Math. Anal. Appl., Volume 150 (1990), pp. 205-223
Cited by Sources:
Comments - Policy