[Interactions entre inclusions relativement proches pour l'équation de Laplace]
La présence de petites inclusions dans un domaine de référence
The presence of small inclusions modifies the solution of the Laplace equation posed in a reference domain
Accepté le :
Publié le :
Virginie Bonnaillie-Noël 1 ; Marc Dambrine 2 ; Sébastien Tordeux 3 ; Grégory Vial 1
@article{CRMATH_2007__345_11_609_0, author = {Virginie Bonnaillie-No\"el and Marc Dambrine and S\'ebastien Tordeux and Gr\'egory Vial}, title = {On moderately close inclusions for the {Laplace} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {609--614}, publisher = {Elsevier}, volume = {345}, number = {11}, year = {2007}, doi = {10.1016/j.crma.2007.10.037}, language = {en}, }
TY - JOUR AU - Virginie Bonnaillie-Noël AU - Marc Dambrine AU - Sébastien Tordeux AU - Grégory Vial TI - On moderately close inclusions for the Laplace equation JO - Comptes Rendus. Mathématique PY - 2007 SP - 609 EP - 614 VL - 345 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2007.10.037 LA - en ID - CRMATH_2007__345_11_609_0 ER -
%0 Journal Article %A Virginie Bonnaillie-Noël %A Marc Dambrine %A Sébastien Tordeux %A Grégory Vial %T On moderately close inclusions for the Laplace equation %J Comptes Rendus. Mathématique %D 2007 %P 609-614 %V 345 %N 11 %I Elsevier %R 10.1016/j.crma.2007.10.037 %G en %F CRMATH_2007__345_11_609_0
Virginie Bonnaillie-Noël; Marc Dambrine; Sébastien Tordeux; Grégory Vial. On moderately close inclusions for the Laplace equation. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 609-614. doi : 10.1016/j.crma.2007.10.037. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.037/
[1] Asymptotic formulas for the voltage potential in a composite medium containing close or touching disks of small diameter, Multiscale Model. Simul., Volume 4 (2005) no. 1, pp. 250-277
[2] V. Bonnaillie-Noël, M. Dambrine, S. Tordeux, G. Vial, On moderately close inclusions for the Laplace equation (2007), in preparation
[3] An elliptic regularity result for a composite medium with “touching” fibers of circular cross-section, SIAM J. Math. Anal., Volume 31 (2000) no. 3, pp. 651-677
[4] On the influence of a boundary perforation on the Dirichlet energy, Control and Cybernetics, Volume 34 (2005) no. 1, pp. 117-136
[5] A multiscale correction method for local singular perturbations of the boundary, M2AN, Volume 41 (2007) no. 1, pp. 111-127
[6] Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Translations of Mathematical Monographs, 1992
[7] Topological derivative for nucleation of non-circular voids. The Neumann problem, Boulder, CO, 1999 (Contemp. Math.), Volume vol. 268, Amer. Math. Soc., Providence, RI (2000), pp. 341-361
[8] Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Birkhäuser, Berlin, 2000
[9] Asymptotic analysis of shape functionals, J. Math. Pures Appl. (9), Volume 82 (2003) no. 2, pp. 125-196
[10] S.A. Nazarov, J. Sokołowski, Spectral problems in the shape optimization, singular boundary perturbations, Prépublications de l'IECN (30) (2007)
[11] Matching and multiscale expansions for a model singular perturbation problem, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006)
- Mathematical and numerical analysis of reduced order interface conditions and augmented finite elements for mixed dimensional problems, Computers Mathematics with Applications, Volume 175 (2024), p. 536 | DOI:10.1016/j.camwa.2024.10.028
- A Dirichlet problem for the Laplace operator in a domain with a small hole close to the boundary, Journal de Mathématiques Pures et Appliquées, Volume 116 (2018), p. 211 | DOI:10.1016/j.matpur.2018.01.004
- Moderately close Neumann inclusions for the Poisson equation, Mathematical Methods in the Applied Sciences, Volume 41 (2018) no. 3, p. 986 | DOI:10.1002/mma.4028
- The Dirichlet problem in a planar domain with two moderately close holes, Journal of Differential Equations, Volume 263 (2017) no. 5, p. 2567 | DOI:10.1016/j.jde.2017.04.006
- A numerical approach for the Poisson equation in a planar domain with a small inclusion, BIT Numerical Mathematics, Volume 56 (2016) no. 4, p. 1237 | DOI:10.1007/s10543-016-0615-z
- A mixed problem for the Laplace operator in a domain with moderately close holes, Communications in Partial Differential Equations, Volume 41 (2016) no. 5, p. 812 | DOI:10.1080/03605302.2015.1135166
- Second-order topological expansion for electrical impedance tomography, Advances in Computational Mathematics, Volume 36 (2012) no. 2, p. 235 | DOI:10.1007/s10444-011-9205-4
- On moderately close inclusions for the Laplace equation, Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, p. 609 | DOI:10.1016/j.crma.2007.10.037
Cité par 8 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier