Comptes Rendus
Partial Differential Equations
On moderately close inclusions for the Laplace equation
Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 609-614.

The presence of small inclusions modifies the solution of the Laplace equation posed in a reference domain Ω0. This question has been widely studied for a single inclusion or well-separated inclusions. We investigate in this Note the case where the distance between the holes tends to zero but remains large with respect to their characteristic size. We first consider two perfectly insulated inclusions. In this configuration we give a complete multiscale asymptotic expansion of the solution to the Laplace equation. We also address the situation of a single inclusion close to a singular perturbation of the boundary Ω0.

La présence de petites inclusions dans un domaine de référence Ω0 modifie la solution de l'équation de Laplace dans ce domaine. Les cas d'une inclusion isolée ou de plusieurs bien séparées ont été largement étudiés. Dans cette Note, nous considérons le cas où la distance entre deux inclusions tend vers zéro mais reste grande par rapport à leur taille caractéristique. Nous donnons un développement asymptotique multi-échelle complet de la solution de l'équation de Laplace dans la situation de deux inclusions parfaitement isolantes. Nous présentons également le cas d'une seule inclusion proche du bord Ω0 qui est lui même perturbé.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.10.037

Virginie Bonnaillie-Noël 1; Marc Dambrine 2; Sébastien Tordeux 3; Grégory Vial 1

1 IRMAR, ENS Cachan Bretagne, CNRS, UEB, avenue Robert-Schuman, 35170 Bruz, France
2 LMAC, Université de technologie de Compiègne, 60200 Compiègne, France
3 MIP, INSA Toulouse, 135, avenue de Rangueil, 31077 Toulouse cedex 4, France
@article{CRMATH_2007__345_11_609_0,
     author = {Virginie Bonnaillie-No\"el and Marc Dambrine and S\'ebastien Tordeux and Gr\'egory Vial},
     title = {On moderately close inclusions for the {Laplace} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {609--614},
     publisher = {Elsevier},
     volume = {345},
     number = {11},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.037},
     language = {en},
}
TY  - JOUR
AU  - Virginie Bonnaillie-Noël
AU  - Marc Dambrine
AU  - Sébastien Tordeux
AU  - Grégory Vial
TI  - On moderately close inclusions for the Laplace equation
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 609
EP  - 614
VL  - 345
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2007.10.037
LA  - en
ID  - CRMATH_2007__345_11_609_0
ER  - 
%0 Journal Article
%A Virginie Bonnaillie-Noël
%A Marc Dambrine
%A Sébastien Tordeux
%A Grégory Vial
%T On moderately close inclusions for the Laplace equation
%J Comptes Rendus. Mathématique
%D 2007
%P 609-614
%V 345
%N 11
%I Elsevier
%R 10.1016/j.crma.2007.10.037
%G en
%F CRMATH_2007__345_11_609_0
Virginie Bonnaillie-Noël; Marc Dambrine; Sébastien Tordeux; Grégory Vial. On moderately close inclusions for the Laplace equation. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 609-614. doi : 10.1016/j.crma.2007.10.037. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.037/

[1] M.F. Ben Hassen; E. Bonnetier Asymptotic formulas for the voltage potential in a composite medium containing close or touching disks of small diameter, Multiscale Model. Simul., Volume 4 (2005) no. 1, pp. 250-277

[2] V. Bonnaillie-Noël, M. Dambrine, S. Tordeux, G. Vial, On moderately close inclusions for the Laplace equation (2007), in preparation

[3] E. Bonnetier; M. Vogelius An elliptic regularity result for a composite medium with “touching” fibers of circular cross-section, SIAM J. Math. Anal., Volume 31 (2000) no. 3, pp. 651-677

[4] M. Dambrine; G. Vial On the influence of a boundary perforation on the Dirichlet energy, Control and Cybernetics, Volume 34 (2005) no. 1, pp. 117-136

[5] M. Dambrine; G. Vial A multiscale correction method for local singular perturbations of the boundary, M2AN, Volume 41 (2007) no. 1, pp. 111-127

[6] A. Il'lin Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Translations of Mathematical Monographs, 1992

[7] T. Lewiński; J. Sokołowski Topological derivative for nucleation of non-circular voids. The Neumann problem, Boulder, CO, 1999 (Contemp. Math.), Volume vol. 268, Amer. Math. Soc., Providence, RI (2000), pp. 341-361

[8] V.G. Maz'ya; S.A. Nazarov; B.A. Plamenevskij Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Birkhäuser, Berlin, 2000

[9] S.A. Nazarov; J. Sokołowski Asymptotic analysis of shape functionals, J. Math. Pures Appl. (9), Volume 82 (2003) no. 2, pp. 125-196

[10] S.A. Nazarov, J. Sokołowski, Spectral problems in the shape optimization, singular boundary perturbations, Prépublications de l'IECN (30) (2007)

[11] S. Tordeux; G. Vial; M. Dauge Matching and multiscale expansions for a model singular perturbation problem, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006)

Cited by Sources:

Comments - Policy