Comptes Rendus
Partial Differential Equations
Vector and scalar potentials, Poincaré's theorem and Korn's inequality
Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 603-608.

In this Note, we present several results concerning vector potentials and scalar potentials in a bounded, not necessarily simply-connected, three-dimensional domain. In particular, we consider singular potentials corresponding to data in negative order Sobolev spaces. We also give some applications to Poincaré's theorem and to Korn's inequality.

Dans cette Note, nous présentons plusieurs résultats concernant les potentiels vecteurs et les potentiels scalaires dans des domaines bornés tridimensionnels, éventuellement multiplement connexes. En particulier, on considère des potentiels singuliers correspondant à des données dans des espaces de Sobolev d'exposant négatif. On donne également des applications au théorème de Poincaré et à l'inégalité de Korn.

Accepted:
Published online:
DOI: 10.1016/j.crma.2007.10.020

Chérif Amrouche 1; Philippe G. Ciarlet 2; Patrick Ciarlet 3

1 Laboratoire de mathématiques appliquées, CNRS UMR 5142, Université de Pau et des pays de l'Adour, IPRA, avenue de l'université, 64000 Pau, France
2 Department of Mathematics, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon, Hong Kong
3 Laboratoire POEMS, UMR 2706 CNRS/ENSTA/INRIA, École nationale supérieure de techniques avancées, 32, boulevard Victor, 75739 Paris cedex 15, France
@article{CRMATH_2007__345_11_603_0,
     author = {Ch\'erif Amrouche and Philippe G. Ciarlet and Patrick Ciarlet},
     title = {Vector and scalar potentials, {Poincar\'e's} theorem and {Korn's} inequality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {603--608},
     publisher = {Elsevier},
     volume = {345},
     number = {11},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.020},
     language = {en},
}
TY  - JOUR
AU  - Chérif Amrouche
AU  - Philippe G. Ciarlet
AU  - Patrick Ciarlet
TI  - Vector and scalar potentials, Poincaré's theorem and Korn's inequality
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 603
EP  - 608
VL  - 345
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2007.10.020
LA  - en
ID  - CRMATH_2007__345_11_603_0
ER  - 
%0 Journal Article
%A Chérif Amrouche
%A Philippe G. Ciarlet
%A Patrick Ciarlet
%T Vector and scalar potentials, Poincaré's theorem and Korn's inequality
%J Comptes Rendus. Mathématique
%D 2007
%P 603-608
%V 345
%N 11
%I Elsevier
%R 10.1016/j.crma.2007.10.020
%G en
%F CRMATH_2007__345_11_603_0
Chérif Amrouche; Philippe G. Ciarlet; Patrick Ciarlet. Vector and scalar potentials, Poincaré's theorem and Korn's inequality. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 603-608. doi : 10.1016/j.crma.2007.10.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.020/

[1] C. Amrouche; C. Bernardi; M. Dauge; V. Girault Vector potentials in three dimensional nonsmooth domains, Math. Methods Appl. Sci., Volume 21 (1998), pp. 823-864

[2] C. Amrouche; P.G. Ciarlet; L. Gratie; S. Kesavan On the characterization of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., Volume 86 (2006), pp. 116-132

[3] C. Amrouche; V. Girault Problèmes généralisés de Stokes, Portugal. Math., Volume 49 (1992), pp. 464-503

[4] C. Amrouche; V. Girault Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czech. Math. J., Volume 44 (1994), pp. 109-140

[5] C. Bernardi, V. Girault, Espaces duaux des domaines des opérateurs divergence et rotationnel avec trace nulle, Publications du Laboratoire Jacques-Louis Lions R 03017, 2003

[6] P.G. Ciarlet; P. Ciarlet Another approach to linearized elasticity and a new proof of Korn's inequality, Math. Models Methods Appl. Sci., Volume 15 (2005), pp. 259-271

[7] P. Fernandes; G. Gilardi Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions, Math. Models Methods Appl. Sci., Volume 7 (1997), pp. 957-991

Cited by Sources:

Comments - Policy