In this Note, we present several results concerning vector potentials and scalar potentials in a bounded, not necessarily simply-connected, three-dimensional domain. In particular, we consider singular potentials corresponding to data in negative order Sobolev spaces. We also give some applications to Poincaré's theorem and to Korn's inequality.
Dans cette Note, nous présentons plusieurs résultats concernant les potentiels vecteurs et les potentiels scalaires dans des domaines bornés tridimensionnels, éventuellement multiplement connexes. En particulier, on considère des potentiels singuliers correspondant à des données dans des espaces de Sobolev d'exposant négatif. On donne également des applications au théorème de Poincaré et à l'inégalité de Korn.
Published online:
Chérif Amrouche 1; Philippe G. Ciarlet 2; Patrick Ciarlet 3
@article{CRMATH_2007__345_11_603_0, author = {Ch\'erif Amrouche and Philippe G. Ciarlet and Patrick Ciarlet}, title = {Vector and scalar potentials, {Poincar\'e's} theorem and {Korn's} inequality}, journal = {Comptes Rendus. Math\'ematique}, pages = {603--608}, publisher = {Elsevier}, volume = {345}, number = {11}, year = {2007}, doi = {10.1016/j.crma.2007.10.020}, language = {en}, }
TY - JOUR AU - Chérif Amrouche AU - Philippe G. Ciarlet AU - Patrick Ciarlet TI - Vector and scalar potentials, Poincaré's theorem and Korn's inequality JO - Comptes Rendus. Mathématique PY - 2007 SP - 603 EP - 608 VL - 345 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2007.10.020 LA - en ID - CRMATH_2007__345_11_603_0 ER -
Chérif Amrouche; Philippe G. Ciarlet; Patrick Ciarlet. Vector and scalar potentials, Poincaré's theorem and Korn's inequality. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 603-608. doi : 10.1016/j.crma.2007.10.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.020/
[1] Vector potentials in three dimensional nonsmooth domains, Math. Methods Appl. Sci., Volume 21 (1998), pp. 823-864
[2] On the characterization of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., Volume 86 (2006), pp. 116-132
[3] Problèmes généralisés de Stokes, Portugal. Math., Volume 49 (1992), pp. 464-503
[4] Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czech. Math. J., Volume 44 (1994), pp. 109-140
[5] C. Bernardi, V. Girault, Espaces duaux des domaines des opérateurs divergence et rotationnel avec trace nulle, Publications du Laboratoire Jacques-Louis Lions R 03017, 2003
[6] Another approach to linearized elasticity and a new proof of Korn's inequality, Math. Models Methods Appl. Sci., Volume 15 (2005), pp. 259-271
[7] Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions, Math. Models Methods Appl. Sci., Volume 7 (1997), pp. 957-991
Cited by Sources:
Comments - Policy