In this Note we present a result on the monodromy conjecture for surfaces that are generic with respect to a toric idealistic cluster.
On présente dans cette Note un résultat sur la conjecture de monodromie pour les surfaces qui sont génériques pour un amas torique idéalistique.
Accepted:
Published online:
Ann Lemahieu 1; Willem Veys 2
@article{CRMATH_2007__345_11_633_0, author = {Ann Lemahieu and Willem Veys}, title = {On monodromy for a class of surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {633--638}, publisher = {Elsevier}, volume = {345}, number = {11}, year = {2007}, doi = {10.1016/j.crma.2007.10.031}, language = {en}, }
Ann Lemahieu; Willem Veys. On monodromy for a class of surfaces. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 633-638. doi : 10.1016/j.crma.2007.10.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.031/
[1] La fonction zêta d'une monodromie, Comment. Math. Helv., Volume 50 (1975), pp. 233-248
[2] Monodromy conjecture for some surface singularities, Ann. Sc. École Norm. Sup., Volume 35 (2002), pp. 605-640
[3] A. Bodin, P. Dèbes, S. Najib, Irreducibility of hypersurfaces, preprint
[4] Clusters of infinitely near points, Math. Ann., Volume 306 (1996), pp. 169-194
[5] Caractéristique d'Euler–Poincaré, fonctions zêta locales et modifications analytiques, J. Amer. Math. Soc., Volume 5 (1992) no. 4, pp. 705-720
[6] Fonctions d'Igusa p-adiques et polynômes de Bernstein, Amer. J. Math., Volume 110 (1988), pp. 1-22
[7] Fonctions d'Igusa p-adiques, polynômes de Bernstein, et polyèdres de Newton, J. Reine Angew. Math., Volume 412 (1990), pp. 75-96
[8] On the monodromy conjecture for curves on normal surfaces, Math. Proc. Cambridge Philos. Soc., Volume 136 (2004), pp. 313-324
[9] Poles of Igusa's local zeta function and monodromy, Bull. Soc. Math. France, Volume 121 (1993), pp. 545-598
[10] Vanishing of principal value integrals on surfaces, J. Reine Angew. Math., Volume 598 (2006), pp. 139-158
Cited by Sources:
⁎ The research was partially supported by the Fund of Scientific Research – Flanders (G.0318.06).
Comments - Policy