Comptes Rendus
Algebraic Geometry
On monodromy for a class of surfaces
Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 633-638.

In this Note we present a result on the monodromy conjecture for surfaces that are generic with respect to a toric idealistic cluster.

On présente dans cette Note un résultat sur la conjecture de monodromie pour les surfaces qui sont génériques pour un amas torique idéalistique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.10.031

Ann Lemahieu 1; Willem Veys 2

1 Fachbereich Mathematik, Universität Kaiserslautern, 67653 Kaiserslautern, Germany
2 Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
@article{CRMATH_2007__345_11_633_0,
     author = {Ann Lemahieu and Willem Veys},
     title = {On monodromy for a class of surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {633--638},
     publisher = {Elsevier},
     volume = {345},
     number = {11},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.031},
     language = {en},
}
TY  - JOUR
AU  - Ann Lemahieu
AU  - Willem Veys
TI  - On monodromy for a class of surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 633
EP  - 638
VL  - 345
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2007.10.031
LA  - en
ID  - CRMATH_2007__345_11_633_0
ER  - 
%0 Journal Article
%A Ann Lemahieu
%A Willem Veys
%T On monodromy for a class of surfaces
%J Comptes Rendus. Mathématique
%D 2007
%P 633-638
%V 345
%N 11
%I Elsevier
%R 10.1016/j.crma.2007.10.031
%G en
%F CRMATH_2007__345_11_633_0
Ann Lemahieu; Willem Veys. On monodromy for a class of surfaces. Comptes Rendus. Mathématique, Volume 345 (2007) no. 11, pp. 633-638. doi : 10.1016/j.crma.2007.10.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.031/

[1] N. A'Campo La fonction zêta d'une monodromie, Comment. Math. Helv., Volume 50 (1975), pp. 233-248

[2] E. Artal-Bartolo; P. Cassou-Noguès; I. Luengo; A. Melle-Hernández Monodromy conjecture for some surface singularities, Ann. Sc. École Norm. Sup., Volume 35 (2002), pp. 605-640

[3] A. Bodin, P. Dèbes, S. Najib, Irreducibility of hypersurfaces, preprint

[4] A. Campillo; G. Gonzalez-Sprinberg; M. Lejeune-Jalabert Clusters of infinitely near points, Math. Ann., Volume 306 (1996), pp. 169-194

[5] J. Denef; F. Loeser Caractéristique d'Euler–Poincaré, fonctions zêta locales et modifications analytiques, J. Amer. Math. Soc., Volume 5 (1992) no. 4, pp. 705-720

[6] F. Loeser Fonctions d'Igusa p-adiques et polynômes de Bernstein, Amer. J. Math., Volume 110 (1988), pp. 1-22

[7] F. Loeser Fonctions d'Igusa p-adiques, polynômes de Bernstein, et polyèdres de Newton, J. Reine Angew. Math., Volume 412 (1990), pp. 75-96

[8] B. Rodrigues On the monodromy conjecture for curves on normal surfaces, Math. Proc. Cambridge Philos. Soc., Volume 136 (2004), pp. 313-324

[9] W. Veys Poles of Igusa's local zeta function and monodromy, Bull. Soc. Math. France, Volume 121 (1993), pp. 545-598

[10] W. Veys Vanishing of principal value integrals on surfaces, J. Reine Angew. Math., Volume 598 (2006), pp. 139-158

Cited by Sources:

The research was partially supported by the Fund of Scientific Research – Flanders (G.0318.06).

Comments - Policy