Comptes Rendus
Mathematical Analysis
Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials
Comptes Rendus. Mathématique, Volume 345 (2007) no. 12, pp. 667-672.

Damanik and collaborators (2007) gave the behavior for large coupling constant of the box dimension of the spectrum of a one-dimensional discrete Schrödinger operator whose potential is a Sturm sequence associated with the golden ratio. They also show that in this case the Hausdorff and box dimensions coincide (i.e. the spectrum is dimension-regular). This Note aims at giving a simpler proof of the asymptotic property result and to generalize it to the case of any Sturm potential associated with an irrational frequency whose continued fraction expansion has bounded partial quotients. Moreover, we determine the upper box dimension of the spectrum, with large coupling constant, and show that it is not dimension-regular in general.

Le comportement asymptotique pour une grande constante de couplage de la dimension du spectre d'un opérateur de Schrödinger discret dont le potentiel est une suite sturmienne associée au nombre d'or vient d'être obtenu par Damanik et al. (2007). Dans cette Note, nous donnons une démonstration plus simple de ce résultat et l'étendons au cas d'un potentiel sturmien associé à une fréquence irrationnelle dont les quotient partiels de sa décomposition en fraction continue sont bornés. Nous montrons qu'en général les dimensions de Hausdorff et de Minkowski du spectre sont différentes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.10.048

Qing-Hui Liu 1; Jacques Peyrière 2, 3; Zhi-Ying Wen 3

1 Department of Computing Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
2 Université Paris-Sud, mathématique bâtiment, 425, CNRS UMR 8628, 91405 Orsay cedex, France
3 Department of Mathematics, Tsinghua University, Beijing, 100084, PR China
@article{CRMATH_2007__345_12_667_0,
     author = {Qing-Hui Liu and Jacques Peyri\`ere and Zhi-Ying Wen},
     title = {Dimension of the spectrum of one-dimensional discrete {Schr\"odinger} operators with {Sturmian} potentials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {667--672},
     publisher = {Elsevier},
     volume = {345},
     number = {12},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.048},
     language = {en},
}
TY  - JOUR
AU  - Qing-Hui Liu
AU  - Jacques Peyrière
AU  - Zhi-Ying Wen
TI  - Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 667
EP  - 672
VL  - 345
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2007.10.048
LA  - en
ID  - CRMATH_2007__345_12_667_0
ER  - 
%0 Journal Article
%A Qing-Hui Liu
%A Jacques Peyrière
%A Zhi-Ying Wen
%T Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials
%J Comptes Rendus. Mathématique
%D 2007
%P 667-672
%V 345
%N 12
%I Elsevier
%R 10.1016/j.crma.2007.10.048
%G en
%F CRMATH_2007__345_12_667_0
Qing-Hui Liu; Jacques Peyrière; Zhi-Ying Wen. Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials. Comptes Rendus. Mathématique, Volume 345 (2007) no. 12, pp. 667-672. doi : 10.1016/j.crma.2007.10.048. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.048/

[1] J. Bellissard; B. Iochum; E. Scoppola; D. Testard Spectral properties of one-dimensional quasicrystals, Commun. Math. Phys., Volume 125 (1989), pp. 527-543

[2] D. Damanik, M. Embree, A. Gorodetski, S. Tcheremchantsev, The fractal dimension of the spectrum of the Fibonacci Hamiltonian, Mp-arc:07-110, preprint, 2007

[3] D. Damanik; R. Killip; D. Lenz Uniform spectral properties of one-dimensional quasicrystals. III. α-continuity, Commun. Math. Phys., Volume 212 (2000), pp. 191-204

[4] S.Y. Jitomirskaya; Y. Last Power law subordinacy and singular spectra. II. Line operators, Commun. Math. Phys., Volume 211 (2000) no. 3, pp. 643-658

[5] Q.-H. Liu; Z.-Y. Wen Hausdorff dimension of spectrum of one-dimensional Schrödinger operator with Sturmian potentials, Potential Anal., Volume 20 (2004) no. 1, pp. 33-59

[6] Q.-H. Liu; Z.-Y. Wen On dimensions of multitype Moran sets, Math. Proc. Cambridge Philos. Soc., Volume 139 (2005) no. 3, pp. 541-553

[7] L. Raymond, A constructive gap labelling for the discrete Schrödinger operator on a quasiperiodic chain, Preprint, 1997

[8] A. Sütő The spectrum of a quasiperiodic Schrödinger operator, Commun. Math. Phys., Volume 111 (1987), pp. 409-415

Cited by Sources:

Comments - Policy