[Principe d'incertitude et régularité pour des équations de type Boltzmann]
Nous montrons une version généralisée du principe d'incertitude, et l'appliquons à l'étude de propriétés de régularisation de solutions d'équations cinétiques. En particulier, nous considérons les versions linéarisée et non linéaire de l'équation de Boltzmann, sans faire l'hypothèse de troncature angulaire de Grad.
We give a generalized version of uncertainty principle, and apply it to the study of regularization properties of solutions to kinetic equations. In particular, both linearized and nonlinear space inhomogeneous Boltzmann equations without Grad's cutoff assumption are considered.
Accepté le :
Publié le :
Radjesvarane Alexandre 1 ; Yoshinori Morimoto 2 ; Seiji Ukai 3 ; Chao-Jiang Xu 4 ; Tong Yang 3, 5
@article{CRMATH_2007__345_12_673_0, author = {Radjesvarane Alexandre and Yoshinori Morimoto and Seiji Ukai and Chao-Jiang Xu and Tong Yang}, title = {Uncertainty principle and regularity for {Boltzmann} type equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {673--677}, publisher = {Elsevier}, volume = {345}, number = {12}, year = {2007}, doi = {10.1016/j.crma.2007.10.032}, language = {en}, }
TY - JOUR AU - Radjesvarane Alexandre AU - Yoshinori Morimoto AU - Seiji Ukai AU - Chao-Jiang Xu AU - Tong Yang TI - Uncertainty principle and regularity for Boltzmann type equations JO - Comptes Rendus. Mathématique PY - 2007 SP - 673 EP - 677 VL - 345 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2007.10.032 LA - en ID - CRMATH_2007__345_12_673_0 ER -
%0 Journal Article %A Radjesvarane Alexandre %A Yoshinori Morimoto %A Seiji Ukai %A Chao-Jiang Xu %A Tong Yang %T Uncertainty principle and regularity for Boltzmann type equations %J Comptes Rendus. Mathématique %D 2007 %P 673-677 %V 345 %N 12 %I Elsevier %R 10.1016/j.crma.2007.10.032 %G en %F CRMATH_2007__345_12_673_0
Radjesvarane Alexandre; Yoshinori Morimoto; Seiji Ukai; Chao-Jiang Xu; Tong Yang. Uncertainty principle and regularity for Boltzmann type equations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 12, pp. 673-677. doi : 10.1016/j.crma.2007.10.032. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.032/
[1] Integral estimates for linear singular operator linked with Boltzmann operator. Part I: small singularities
[2] R. Alexandre, Y. Morimoto, S. Ukai, C.-Y. Xu, T. Yang, in preparation
[3] Hypoelliptic regularity in kinetic equations, J. Math. Pure Appl., Volume 81 (2002), pp. 1135-1159
[4] The uncertainty principle, Bull. Amer. Math. Soc., Volume 9 (1983), pp. 129-206
[5] The uncertainty principle and sharp Gȧrding inequalities, Comm. Pure. Appl. Math., Volume 34 (1981), pp. 285-331
[6] The uncertainty principle and hypoelliptic operators, Publ. RIMS Kyoto Univ., Volume 23 (1987), pp. 955-964
[7] Estimates for degenerate Schrödinger operators and hypoellipticity for infinitely degenerate elliptic operators, J. Math. Kyoto Univ., Volume 32 (1992), pp. 333-372
[8] The positivity of Schrödinger operators and the hypoellipticity of second order degenerate elliptic operators, Bull. Sci. Math., Volume 121 (1997), pp. 507-547
[9] Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff, preprint
[10] Y. Morimoto, C.-J. Xu, Hypoellipticity for a class of kinetic equations, J. Math. Kyoto. Univ. 47 (2007), in press
[11] A review of mathematical topics in collisional kinetic theory (S. Friedlander; D. Serre, eds.), Handbook of Mathematical Fluid Dynamics, vol. I, North-Holland, Amsterdam, 2002, pp. 71-305
- Partial regularity up to the boundary for solutions of subquadratic elliptic systems, Advances in Nonlinear Analysis, Volume 7 (2018) no. 4, p. 469 | DOI:10.1515/anona-2016-0054
- Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff, Communications in Mathematical Physics, Volume 304 (2011) no. 2, p. 513 | DOI:10.1007/s00220-011-1242-9
- Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation, Archive for Rational Mechanics and Analysis, Volume 198 (2010) no. 1, p. 39 | DOI:10.1007/s00205-010-0290-1
- Gevrey hypoellipticity for linear and non-linear Fokker–Planck equations, Journal of Differential Equations, Volume 246 (2009) no. 1, p. 320 | DOI:10.1016/j.jde.2008.05.019
Cité par 4 documents. Sources : Crossref
Commentaires - Politique