[L'espace des modules des germes de familles génériques de difféomorphismes analytiques déployant un point fixe parabolique]
On donne l'espace des modules des germes de familles génériques de difféomorphismes analytiques déployant un point fixe parabolique de codimension 1. Un module complet est donné par le déploiement du module d'Écalle–Voronin sur un secteur d'ouverture plus grande que 2π du paramètre canonique. Dans le sous-secteur recouvert deux fois (sous-secteur Glutsyuk), là où les deux points fixes sont connectés par des orbites, on identifie une condition de compatibilité nécessaire satisfaite par les deux représentants du module. Cette condition implique l'existence d'une normalisation sous laquelle le module est
We describe the moduli space of germs of generic families of analytic diffeomorphisms which unfold a parabolic fixed point of codimension 1. A complete modulus is given by unfolding the Écalle–Voronin modulus over a sector of opening greater than 2π in the canonical parameter ϵ. In the region of overlap (Glutsyuk sector of parameter space) where the two fixed points are connected by orbits, we identify the necessary compatibility between the two representatives of the modulus. The compatibility condition implies the existence of a normalization for which the modulus is
Accepté le :
Publié le :
Colin Christopher 1 ; Christiane Rousseau 2
@article{CRMATH_2007__345_12_695_0, author = {Colin Christopher and Christiane Rousseau}, title = {The moduli space of germs of generic families of analytic diffeomorphisms unfolding a parabolic fixed point}, journal = {Comptes Rendus. Math\'ematique}, pages = {695--698}, publisher = {Elsevier}, volume = {345}, number = {12}, year = {2007}, doi = {10.1016/j.crma.2007.10.033}, language = {en}, }
TY - JOUR AU - Colin Christopher AU - Christiane Rousseau TI - The moduli space of germs of generic families of analytic diffeomorphisms unfolding a parabolic fixed point JO - Comptes Rendus. Mathématique PY - 2007 SP - 695 EP - 698 VL - 345 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2007.10.033 LA - en ID - CRMATH_2007__345_12_695_0 ER -
%0 Journal Article %A Colin Christopher %A Christiane Rousseau %T The moduli space of germs of generic families of analytic diffeomorphisms unfolding a parabolic fixed point %J Comptes Rendus. Mathématique %D 2007 %P 695-698 %V 345 %N 12 %I Elsevier %R 10.1016/j.crma.2007.10.033 %G en %F CRMATH_2007__345_12_695_0
Colin Christopher; Christiane Rousseau. The moduli space of germs of generic families of analytic diffeomorphisms unfolding a parabolic fixed point. Comptes Rendus. Mathématique, Volume 345 (2007) no. 12, pp. 695-698. doi : 10.1016/j.crma.2007.10.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.033/
[1] Confluence of singular points and nonlinear Stokes phenomenon, Trans. Moscow Math. Soc., Volume 62 (2001), pp. 49-95
[2] Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms, Moscow Math. J., Volume 4 (2004), pp. 455-502
[3] Les séries k-sommables et leurs applications, Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Proc. Internat. Colloq. Centre Phys., Les Houches, 1979 (Lecture Notes in Phys.), Volume vol. 126, Springer, Berlin, New York (1980), pp. 178-199 (in French)
[4] Hukuhara's domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type, Asymptotic Anal., Volume 2 (1989), pp. 39-94
[5] X. Ribon, Modulus of analytic classification for unfoldings of resonant diffeomorphisms, Moscow Math. J., in press
- Analytic moduli for unfoldings of germs of generic analytic diffeomorphisms with a codimension parabolic point, Ergodic Theory and Dynamical Systems, Volume 35 (2015) no. 1, p. 274 | DOI:10.1017/etds.2013.37
- The modulus of analytic classification for the unfolding of the codimension-one flip and Hopf bifurcations, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 20 (2011) no. 3, p. 541 | DOI:10.5802/afst.1317
- The Stokes phenomenon in the confluence of the hypergeometric equation using Riccati equation, Journal of Differential Equations, Volume 244 (2008) no. 10, p. 2641 | DOI:10.1016/j.jde.2008.02.012
Cité par 3 documents. Sources : Crossref
⁎ This work is supported by NSERC in Canada.
Commentaires - Politique