Given and a domain , we show that for every finite energy solution of the equation in Ω, the set has Hausdorff dimension at most . The proof is based on a removable singularity property of the Laplacian Δ.
Étant donnés et un domaine borné , nous prouvons que pour toute solution d'énergie finie de l'équation , l'ensemble a une dimension de Hausdorff inférieure ou égale à . La démonstration de ce résultat repose sur une propriété de singularité éliminable du laplacien Δ.
Published online:
Juan Dávila 1; Augusto C. Ponce 2
@article{CRMATH_2008__346_1-2_27_0, author = {Juan D\'avila and Augusto C. Ponce}, title = {Hausdorff dimension of rupture sets and removable singularities}, journal = {Comptes Rendus. Math\'ematique}, pages = {27--32}, publisher = {Elsevier}, volume = {346}, number = {1-2}, year = {2008}, doi = {10.1016/j.crma.2007.11.007}, language = {en}, }
Juan Dávila; Augusto C. Ponce. Hausdorff dimension of rupture sets and removable singularities. Comptes Rendus. Mathématique, Volume 346 (2008) no. 1-2, pp. 27-32. doi : 10.1016/j.crma.2007.11.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.11.007/
[1] Remarks on the strong maximum principle, Differential Integral Equations, Volume 16 (2003), pp. 1-12
[2] Kato's inequality when Δu is a measure, C.R. Math. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 599-604
[3] Positive versus free boundary solutions to a singular elliptic equation, J. Anal. Math., Volume 90 (2003), pp. 303-335
[4] Variants of Kato's inequality and removable singularities, J. Anal. Math., Volume 91 (2003), pp. 143-178
[5] Singularities of positive supersolutions in elliptic PDEs, Selecta Math. (N.S.), Volume 10 (2004), pp. 341-358
[6] Elliptic equations with vertical asymptotes in the nonlinear term, J. Anal. Math., Volume 98 (2006), pp. 349-396
[7] Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992
[8] Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity, Manuscripta Math., Volume 120 (2006), pp. 193-209
[9] Zero set of Sobolev functions with negative power of integrability, Chinese Ann. Math. Ser. B, Volume 25 (2004), pp. 65-72
[10] J. Van Schaftingen, M. Willem, Symmetry of solutions of semilinear elliptic problems, J. Eur. Math. Soc. (JEMS), in press
[11] Dynamics of three-dimensional thin film rupture, Physica D, Volume 147 (2000), pp. 155-176
Cited by Sources:
Comments - Policy