Comptes Rendus
Partial Differential Equations
Exponential rates of convergence by an iteration technique
Comptes Rendus. Mathématique, Volume 346 (2008) no. 1-2, pp. 21-26.

The goal of this Note is to introduce a technique leading to a convergence of exponential type for the solution of problems set in cylinders becoming unbounded in some directions.

Le but de cette Note est la présentation d'une technique conduisant à une convergence de type exponentiel pour la solution de problèmes posés dans des cylindres dont certaines directions tendent vers l'infini.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.12.004
Michel Chipot 1; Karen Yeressian 1

1 Institute of Mathematics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
@article{CRMATH_2008__346_1-2_21_0,
     author = {Michel Chipot and Karen Yeressian},
     title = {Exponential rates of convergence by an iteration technique},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {21--26},
     publisher = {Elsevier},
     volume = {346},
     number = {1-2},
     year = {2008},
     doi = {10.1016/j.crma.2007.12.004},
     language = {en},
}
TY  - JOUR
AU  - Michel Chipot
AU  - Karen Yeressian
TI  - Exponential rates of convergence by an iteration technique
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 21
EP  - 26
VL  - 346
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2007.12.004
LA  - en
ID  - CRMATH_2008__346_1-2_21_0
ER  - 
%0 Journal Article
%A Michel Chipot
%A Karen Yeressian
%T Exponential rates of convergence by an iteration technique
%J Comptes Rendus. Mathématique
%D 2008
%P 21-26
%V 346
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2007.12.004
%G en
%F CRMATH_2008__346_1-2_21_0
Michel Chipot; Karen Yeressian. Exponential rates of convergence by an iteration technique. Comptes Rendus. Mathématique, Volume 346 (2008) no. 1-2, pp. 21-26. doi : 10.1016/j.crma.2007.12.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.12.004/

[1] B. Brighi, S. Guesmia, On elliptic boundary value problems of order 2m in cylindrical domain of large size, in press

[2] M. Chipot Goes to Plus Infinity, Birkhäuser, 2002

[3] M. Chipot, S. Mardare, Asymptotic behaviour of the Stokes problem in cylinders becoming unbounded in one direction, in press

[4] M. Chipot; A. Rougirel On the asymptotic behavior of the solution of elliptic problems in cylindrical domains becoming unbounded, Commun. Contemp. Math., Volume 4 (2002) no. 1, pp. 15-24

[5] M. Chipot, K. Yeressian, in preparation

[6] M. Chipot; Y. Xie On the asymptotic behaviour of elliptic problems with periodic data, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 477-482

[7] M. Chipot; Y. Xie Elliptic problems with periodic data: an asymptotic analysis, J. Math. Pures Appl., Volume 85 (2006), pp. 345-370

[8] R. Dautray; J.L. Lions Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, 1988

[9] D. Gilbarg; N.S. Trudinger Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983

[10] S. Guesmia, Etude du comportement asymptotique de certaines équations aux dérivées partielles dans des domaines cylindriques, Thèse Université de Haute Alsace, December 2006

[11] Y. Xie, On Asymptotic Problems in Cylinders and Other Mathematical Issues, Thesis University of Zürich, May 2006

Cited by Sources:

Comments - Policy


Articles of potential interest

On the asymptotic behaviour of elliptic problems with periodic data

Michel Chipot; Yitian Xie

C. R. Math (2004)