We study the nonlinear Schrödinger equation on a compact manifold or on , where V is a positive potential and . As ε tends to zero, we prove existence of complex-valued solutions which concentrate along closed curves and whose phase is highly oscillatory, carrying quantum-mechanical momentum along the limit set.
On étudie l'équation de Schrödinger non linéaire sur une variété compacte ou sur , où V est un potentiel positif, régulier et . Lorsque ε tend vers zéro, on montre l'existence de solutions à valeurs complexes qui se concentrent le long d'une courbe fermée et dont la phase est hautement oscillante, portant un moment quantique le long de l'ensemble limite.
Accepted:
Published online:
Fethi Mahmoudi 1; Andrea Malchiodi 2; Marcelo Montenegro 3
@article{CRMATH_2008__346_1-2_33_0, author = {Fethi Mahmoudi and Andrea Malchiodi and Marcelo Montenegro}, title = {Solutions to the nonlinear {Schr\"odinger} equation carrying momentum along a curve}, journal = {Comptes Rendus. Math\'ematique}, pages = {33--38}, publisher = {Elsevier}, volume = {346}, number = {1-2}, year = {2008}, doi = {10.1016/j.crma.2007.11.008}, language = {en}, }
TY - JOUR AU - Fethi Mahmoudi AU - Andrea Malchiodi AU - Marcelo Montenegro TI - Solutions to the nonlinear Schrödinger equation carrying momentum along a curve JO - Comptes Rendus. Mathématique PY - 2008 SP - 33 EP - 38 VL - 346 IS - 1-2 PB - Elsevier DO - 10.1016/j.crma.2007.11.008 LA - en ID - CRMATH_2008__346_1-2_33_0 ER -
%0 Journal Article %A Fethi Mahmoudi %A Andrea Malchiodi %A Marcelo Montenegro %T Solutions to the nonlinear Schrödinger equation carrying momentum along a curve %J Comptes Rendus. Mathématique %D 2008 %P 33-38 %V 346 %N 1-2 %I Elsevier %R 10.1016/j.crma.2007.11.008 %G en %F CRMATH_2008__346_1-2_33_0
Fethi Mahmoudi; Andrea Malchiodi; Marcelo Montenegro. Solutions to the nonlinear Schrödinger equation carrying momentum along a curve. Comptes Rendus. Mathématique, Volume 346 (2008) no. 1-2, pp. 33-38. doi : 10.1016/j.crma.2007.11.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.11.008/
[1] Perturbation Methods and Semilinear Elliptic Problems on , Progr. Math., vol. 240, Birkhäuser, 2005
[2] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I, Commun. Math. Phys., Volume 235 (2003), pp. 427-466
[3] On a class of solutions with non vanishing angular momentum for nonlinear Schrödinger equation, Differential Integral Equations, Volume 16 (2003) no. 3, pp. 349-384
[4] Concentration at curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math., Volume 60 (2007) no. 1, pp. 113-146
[5] Concentration at manifolds of arbitrary dimension for a singularly perturbed Neumann problem, Rend. Lincei Mat. Appl., Volume 17 (2003) no. 2006, pp. 279-290
[6] Concentration on minimal submanifolds for a singularly perturbed Neumann problem, Adv. Math., Volume 209 (2007), pp. 460-525
[7] F. Mahmoudi, A. Malchiodi, M. Montenegro, Solutions to the nonlinear Schrödinger equation carrying momentum along a curve. Part I: Study of the limit set and approximate solutions, preprint
[8] F. Mahmoudi, A. Malchiodi, Solutions to the nonlinear Schrödinger equation carrying momentum along a curve. Part II: Proof of the existence result, preprint
[9] Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, GAFA, Volume 15 (2005) no. 6, pp. 1162-1222
[10] Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math., Volume 55 (2002) no. 12, pp. 1507-1568
[11] Multidimensional boundary-layers for a singularly perturbed Neumann problem, Duke Math. J., Volume 124 (2004) no. 1, pp. 105-143
[12] Foliations by constant mean curvature tubes, Comm. Anal. Geom., Volume 13 (2005) no. 4, pp. 633-670
[13] Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., Volume 45 (1998) no. 1, pp. 9-18
[14] Nonlinear stabilization of quasimodes, Univ. Hawaii, Honolulu, Hawaii, 1979 (Proc. Sympos. Pure Math.), Volume vol. XXXVI, Amer. Math. Soc., Providence, RI (1980), pp. 301-318 MR0573443 (82d:58016)
Cited by Sources:
Comments - Policy