Comptes Rendus
Optimal Control
Carleman inequalities and inverse problems for the Schrödinger equation
Comptes Rendus. Mathématique, Volume 346 (2008) no. 1-2, pp. 53-58.

In this Note, we derive new Carleman inequalities for the evolution Schrödinger equation under a weak pseudoconvexity condition, which allows us to use weights with a linear spatial dependence. As a result, less restrictive boundary or internal observation regions may be used to obtain the stability for the inverse problem consisting in retrieving a stationary potential in the Schrödinger equation from a single boundary or internal measurement, respectively.

Dans cette Note, nous établissons de nouvelles inégalités de Carleman pour l'équation d'évolution de Schrödinger sous une hypothèse de pseudoconvexité faible, qui permet d'utiliser des poids affines en la variable d'espace. Comme application, nous pouvons définir des régions d'observabilité moins restrictives dans le problème inverse consistant à retrouver un potentiel stationnaire dans l'équation de Schrödinger à partir d'une mesure simple effectuée au bord ou à l'intérieur du domaine.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.11.014

Alberto Mercado 1; Axel Osses 1; Lionel Rosier 1, 2

1 Centro de Modelamiento Matemático (CMM) and Departamento de Ingeniería Matemática (DIM), Universidad de Chile (UMI CNRS 2807), Avenida Blanco Encalada 2120, Casilla 170-3, Correo 3, Santiago, Chile
2 Institut Elie-Cartan, UMR 7502 UHP/CNRS/INRIA, B.P. 239, 54506 Vandœuvre-lès-Nancy cedex, France
@article{CRMATH_2008__346_1-2_53_0,
     author = {Alberto Mercado and Axel Osses and Lionel Rosier},
     title = {Carleman inequalities and inverse problems for the {Schr\"odinger} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {53--58},
     publisher = {Elsevier},
     volume = {346},
     number = {1-2},
     year = {2008},
     doi = {10.1016/j.crma.2007.11.014},
     language = {en},
}
TY  - JOUR
AU  - Alberto Mercado
AU  - Axel Osses
AU  - Lionel Rosier
TI  - Carleman inequalities and inverse problems for the Schrödinger equation
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 53
EP  - 58
VL  - 346
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2007.11.014
LA  - en
ID  - CRMATH_2008__346_1-2_53_0
ER  - 
%0 Journal Article
%A Alberto Mercado
%A Axel Osses
%A Lionel Rosier
%T Carleman inequalities and inverse problems for the Schrödinger equation
%J Comptes Rendus. Mathématique
%D 2008
%P 53-58
%V 346
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2007.11.014
%G en
%F CRMATH_2008__346_1-2_53_0
Alberto Mercado; Axel Osses; Lionel Rosier. Carleman inequalities and inverse problems for the Schrödinger equation. Comptes Rendus. Mathématique, Volume 346 (2008) no. 1-2, pp. 53-58. doi : 10.1016/j.crma.2007.11.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.11.014/

[1] L. Baudouin; J.-P. Puel Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, Volume 18 (2002), pp. 1537-1554

[2] A. Bukhgeim; M. Klibanov Global uniqueness of a class of inverse problems, Sov. Math. Dokl., Volume 24 (1982), pp. 244-247

[3] N. Burq; M. Zworski Geometric control in the presence of a black box, J. Amer. Math. Soc., Volume 17 (2004) no. 2, pp. 443-471

[4] L. Cardoulis; M. Cristofol; P. Gaitan Inverse problem for the Schrödinger operator in an unbounded strip | arXiv

[5] V. Isakov Carleman type estimates in an anisotropic case and applications, J. Differential Equations, Volume 105 (1993), pp. 217-238

[6] I. Lasiecka; R. Triggiani; X. Zhang Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part I: H1-estimates, J. Inv. Ill-Posed Problems, Volume 11 (2004) no. 1, pp. 43-123

[7] K. Liu Locally distributed control and damping for the conservative systems, SIAM J. Control Optim., Volume 35 (1997) no. 5, pp. 1574-1590

[8] A. Mercado, A. Osses, L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problems, in press

[9] L. Rosier, B.-Y. Zhang, Null controllability of the complex Ginzburg–Landau equation, submitted for publication

Cited by Sources:

Comments - Policy